You can find the main data card on the GEM Website .
The sportsett dataset is an English data-to-text dataset in the basketball domain. The inputs are statistics summarizing an NBA game and the outputs are high-quality descriptions of the game in natural language.
You can load the dataset via:
import datasets data = datasets.load_dataset('GEM/sportsett_basketball')
The data loader can be found here .
website paper authorsCraig Thomson, Ashish Upadhyay
@inproceedings{thomson-etal-2020-sportsett, title = "{S}port{S}ett:Basketball - A robust and maintainable data-set for Natural Language Generation", author = "Thomson, Craig and Reiter, Ehud and Sripada, Somayajulu", booktitle = "Proceedings of the Workshop on Intelligent Information Processing and Natural Language Generation", month = sep, year = "2020", address = "Santiago de Compostela, Spain", publisher = "Association for Computational Lingustics", url = "https://aclanthology.org/2020.intellang-1.4", pages = "32--40", }Contact Name
Craig Thomson
Contact Emailc.thomson@abdn.ac.uk
Has a Leaderboard?no
no
Covered DialectsAmerican English
One dialect, one language.
Covered LanguagesEnglish
Whose Language?American sports writers
Licensemit: MIT License
Intended UseMaintain a robust and scalable Data-to-Text generation resource with structured data and textual summaries
Primary TaskData-to-Text
Communicative GoalA model trained on this dataset should summarise the statistical and other information from a basketball game. This will be focused on a single game, although facts from prior games, or aggregate statistics over many games can and should be used for comparison where appropriate. There no single common narrative, although summaries usually start with who player, when, where, and the score. They then provide high level commentary on what the difference in the game was (why the winner won). breakdowns of statistics for prominent players follow, winning team first. Finally, the upcoming schedule for both teams is usually included. There are, however, other types of fact that can be included, and other narrative structures.
academic
Curation Organization(s)University of Aberdeen, Robert Gordon University
Dataset CreatorsCraig Thomson, Ashish Upadhyay
FundingEPSRC
Who added the Dataset to GEM?Craig Thomson, Ashish Upadhyay
Each instance in the dataset has five fields.
"sportsett_id": This is a unique id as used in the original SportSett database. It starts with '1' with the first instance in the train-set and ends with '6150' with the last instance in test-set.
"gem_id": This is a unique id created as per GEM's requirement which follows the GEM-${DATASET_NAME}-${SPLIT-NAME}-${id} pattern.
"game": This field contains a dictionary with information about current game. It has information such as date on which the game was played alongwith the stadium, city, state where it was played.
"teams": This filed is a dictionary of multiple nested dictionaries. On the highest level, it has two keys: 'home' and 'vis', which provide the stats for home team and visiting team of the game. Both are dictionaries with same structure. Each dictionary will contain team's information such as name of the team, their total wins/losses in current season, their conference standing, the SportSett ids for their current and previous games. Apart from these general information, they also have the box- and line- scores for the team in the game. Box score is the stats of players from the team at the end of the game, while line score along with the whole game stats is divided into quarters and halves as well as the extra-time (if happened in the game). After these scores, there is another field of next-game, which gives general information about team's next game such as the place and opponent's name of the next game.
"summaries": This is a list of summaries for each game. Some games will have more than one summary, in that case, the list will have more than one entries. Each summary in the list is a string which can be tokenised by a space, following the practices in RotoWire-FG dataset ( Wang, 2019 ).
The structure mostly follows the original structure defined in RotoWire dataset ( Wiseman et. al. 2017 ) with some modifications (such as game and next-game keys) address the problem of information gap between input and output data ( Thomson et. al. 2020 ).
How were labels chosen?Similar to RotoWire dataset ( Wiseman et. al. 2017 )
Example Instance{ "sportsett_id": "1", "gem_id": "GEM-sportsett_basketball-train-0", "game": { "day": "1", "month": "November", "year": "2014", "dayname": "Saturday", "season": "2014", "stadium": "Wells Fargo Center", "city": "Philadelphia", "state": "Pennsylvania", "attendance": "19753", "capacity": "20478", "game_id": "1" }, "teams": { "home": { "name": "76ers", "place": "Philadelphia", "conference": "Eastern Conference", "division": "Atlantic", "wins": "0", "losses": "3", "conference_standing": 15, "game_number": "3", "previous_game_id": "42", "next_game_id": "2", "line_score": { "game": { "FG3A": "23", "FG3M": "7", "FG3_PCT": "30", "FGA": "67", "FGM": "35", "FG_PCT": "52", "FTA": "26", "FTM": "19", "FT_PCT": "73", "DREB": "33", "OREB": "4", "TREB": "37", "BLK": "10", "AST": "28", "STL": "9", "TOV": "24", "PF": "21", "PTS": "96", "MIN": "4" }, "H1": { "FG3A": "82", "FG3M": "30", "FG3_PCT": "37", "FGA": "2115", "FGM": "138", "FG_PCT": "7", "FTA": "212", "FTM": "18", "FT_PCT": "8", "DREB": "810", "OREB": "21", "TREB": "831", "BLK": "51", "AST": "107", "STL": "21", "TOV": "64", "PTS": "3024", "MIN": "6060" }, "H2": { "FG3A": "85", "FG3M": "40", "FG3_PCT": "47", "FGA": "1615", "FGM": "104", "FG_PCT": "6", "FTA": "66", "FTM": "55", "FT_PCT": "83", "DREB": "96", "OREB": "10", "TREB": "106", "BLK": "22", "AST": "92", "STL": "24", "TOV": "68", "PTS": "2913", "MIN": "6060" }, "Q1": { "FG3A": "8", "FG3M": "3", "FG3_PCT": "38", "FGA": "21", "FGM": "13", "FG_PCT": "62", "FTA": "2", "FTM": "1", "FT_PCT": "50", "DREB": "8", "OREB": "2", "TREB": "10", "BLK": "5", "AST": "10", "STL": "2", "TOV": "6", "PTS": "30", "MIN": "60" }, "Q2": { "FG3A": "2", "FG3M": "0", "FG3_PCT": "0", "FGA": "15", "FGM": "8", "FG_PCT": "53", "FTA": "12", "FTM": "8", "FT_PCT": "67", "DREB": "10", "OREB": "1", "TREB": "11", "BLK": "1", "AST": "7", "STL": "1", "TOV": "4", "PTS": "24", "MIN": "60" }, "Q3": { "FG3A": "8", "FG3M": "4", "FG3_PCT": "50", "FGA": "16", "FGM": "10", "FG_PCT": "62", "FTA": "6", "FTM": "5", "FT_PCT": "83", "DREB": "9", "OREB": "1", "TREB": "10", "BLK": "2", "AST": "9", "STL": "2", "TOV": "6", "PTS": "29", "MIN": "60" }, "Q4": { "FG3A": "5", "FG3M": "0", "FG3_PCT": "0", "FGA": "15", "FGM": "4", "FG_PCT": "27", "FTA": "6", "FTM": "5", "FT_PCT": "83", "DREB": "6", "OREB": "0", "TREB": "6", "BLK": "2", "AST": "2", "STL": "4", "TOV": "8", "PTS": "13", "MIN": "60" }, "OT": { "FG3A": "0", "FG3M": "0", "FG3_PCT": "0", "FGA": "0", "FGM": "0", "FG_PCT": "0", "FTA": "0", "FTM": "0", "FT_PCT": "0", "DREB": "0", "OREB": "0", "TREB": "0", "BLK": "0", "AST": "0", "STL": "0", "TOV": "0", "PTS": "0", "MIN": "0" } }, "box_score": [ { "first_name": "Tony", "last_name": "Wroten", "name": "Tony Wroten", "starter": "True", "MIN": "33", "FGM": "6", "FGA": "11", "FG_PCT": "55", "FG3M": "1", "FG3A": "4", "FG3_PCT": "25", "FTM": "8", "FTA": "11", "FT_PCT": "73", "OREB": "0", "DREB": "3", "TREB": "3", "AST": "10", "STL": "1", "BLK": "1", "TOV": "4", "PF": "1", "PTS": "21", "+/-": "-11", "DOUBLE": "double" }, { "first_name": "Hollis", "last_name": "Thompson", "name": "Hollis Thompson", "starter": "True", "MIN": "32", "FGM": "4", "FGA": "8", "FG_PCT": "50", "FG3M": "2", "FG3A": "5", "FG3_PCT": "40", "FTM": "0", "FTA": "0", "FT_PCT": "0", "OREB": "0", "DREB": "1", "TREB": "1", "AST": "2", "STL": "0", "BLK": "3", "TOV": "2", "PF": "2", "PTS": "10", "+/-": "-17", "DOUBLE": "none" }, { "first_name": "Henry", "last_name": "Sims", "name": "Henry Sims", "starter": "True", "MIN": "27", "FGM": "4", "FGA": "9", "FG_PCT": "44", "FG3M": "0", "FG3A": "0", "FG3_PCT": "0", "FTM": "1", "FTA": "2", "FT_PCT": "50", "OREB": "1", "DREB": "3", "TREB": "4", "AST": "2", "STL": "0", "BLK": "1", "TOV": "0", "PF": "1", "PTS": "9", "+/-": "-10", "DOUBLE": "none" }, { "first_name": "Nerlens", "last_name": "Noel", "name": "Nerlens Noel", "starter": "True", "MIN": "25", "FGM": "1", "FGA": "4", "FG_PCT": "25", "FG3M": "0", "FG3A": "0", "FG3_PCT": "0", "FTM": "0", "FTA": "0", "FT_PCT": "0", "OREB": "0", "DREB": "5", "TREB": "5", "AST": "3", "STL": "1", "BLK": "1", "TOV": "3", "PF": "1", "PTS": "2", "+/-": "-19", "DOUBLE": "none" }, { "first_name": "Luc", "last_name": "Mbah a Moute", "name": "Luc Mbah a Moute", "starter": "True", "MIN": "19", "FGM": "4", "FGA": "10", "FG_PCT": "40", "FG3M": "0", "FG3A": "2", "FG3_PCT": "0", "FTM": "1", "FTA": "2", "FT_PCT": "50", "OREB": "3", "DREB": "4", "TREB": "7", "AST": "3", "STL": "1", "BLK": "0", "TOV": "6", "PF": "3", "PTS": "9", "+/-": "-12", "DOUBLE": "none" }, { "first_name": "Brandon", "last_name": "Davies", "name": "Brandon Davies", "starter": "False", "MIN": "23", "FGM": "7", "FGA": "9", "FG_PCT": "78", "FG3M": "1", "FG3A": "2", "FG3_PCT": "50", "FTM": "3", "FTA": "4", "FT_PCT": "75", "OREB": "0", "DREB": "3", "TREB": "3", "AST": "0", "STL": "3", "BLK": "0", "TOV": "3", "PF": "3", "PTS": "18", "+/-": "-1", "DOUBLE": "none" }, { "first_name": "Chris", "last_name": "Johnson", "name": "Chris Johnson", "starter": "False", "MIN": "21", "FGM": "2", "FGA": "4", "FG_PCT": "50", "FG3M": "1", "FG3A": "3", "FG3_PCT": "33", "FTM": "0", "FTA": "0", "FT_PCT": "0", "OREB": "0", "DREB": "2", "TREB": "2", "AST": "0", "STL": "3", "BLK": "0", "TOV": "2", "PF": "5", "PTS": "5", "+/-": "3", "DOUBLE": "none" }, { "first_name": "K.J.", "last_name": "McDaniels", "name": "K.J. McDaniels", "starter": "False", "MIN": "20", "FGM": "2", "FGA": "4", "FG_PCT": "50", "FG3M": "1", "FG3A": "3", "FG3_PCT": "33", "FTM": "3", "FTA": "4", "FT_PCT": "75", "OREB": "0", "DREB": "1", "TREB": "1", "AST": "2", "STL": "0", "BLK": "3", "TOV": "2", "PF": "3", "PTS": "8", "+/-": "-10", "DOUBLE": "none" }, { "first_name": "Malcolm", "last_name": "Thomas", "name": "Malcolm Thomas", "starter": "False", "MIN": "19", "FGM": "4", "FGA": "4", "FG_PCT": "100", "FG3M": "0", "FG3A": "0", "FG3_PCT": "0", "FTM": "0", "FTA": "0", "FT_PCT": "0", "OREB": "0", "DREB": "9", "TREB": "9", "AST": "0", "STL": "0", "BLK": "0", "TOV": "0", "PF": "2", "PTS": "8", "+/-": "-6", "DOUBLE": "none" }, { "first_name": "Alexey", "last_name": "Shved", "name": "Alexey Shved", "starter": "False", "MIN": "14", "FGM": "1", "FGA": "4", "FG_PCT": "25", "FG3M": "1", "FG3A": "4", "FG3_PCT": "25", "FTM": "3", "FTA": "3", "FT_PCT": "100", "OREB": "0", "DREB": "1", "TREB": "1", "AST": "6", "STL": "0", "BLK": "0", "TOV": "2", "PF": "0", "PTS": "6", "+/-": "-7", "DOUBLE": "none" }, { "first_name": "JaKarr", "last_name": "Sampson", "name": "JaKarr Sampson", "starter": "False", "MIN": "2", "FGM": "0", "FGA": "0", "FG_PCT": "0", "FG3M": "0", "FG3A": "0", "FG3_PCT": "0", "FTM": "0", "FTA": "0", "FT_PCT": "0", "OREB": "0", "DREB": "1", "TREB": "1", "AST": "0", "STL": "0", "BLK": "1", "TOV": "0", "PF": "0", "PTS": "0", "+/-": "0", "DOUBLE": "none" }, { "first_name": "Michael", "last_name": "Carter-Williams", "name": "Michael Carter-Williams", "starter": "False", "MIN": "0", "FGM": "0", "FGA": "0", "FG_PCT": "0", "FG3M": "0", "FG3A": "0", "FG3_PCT": "0", "FTM": "0", "FTA": "0", "FT_PCT": "0", "OREB": "0", "DREB": "0", "TREB": "0", "AST": "0", "STL": "0", "BLK": "0", "TOV": "0", "PF": "0", "PTS": "0", "+/-": "0", "DOUBLE": "none" } ], "next_game": { "day": "3", "month": "November", "year": "2014", "dayname": "Monday", "stadium": "Wells Fargo Center", "city": "Philadelphia", "opponent_name": "Rockets", "opponent_place": "Houston", "is_home": "True" } }, "vis": { "name": "Heat", "place": "Miami", "conference": "Eastern Conference", "division": "Southeast", "wins": "2", "losses": "0", "conference_standing": 1, "game_number": "2", "previous_game_id": "329", "next_game_id": "330", "line_score": { "game": { "FG3A": "24", "FG3M": "12", "FG3_PCT": "50", "FGA": "83", "FGM": "41", "FG_PCT": "49", "FTA": "29", "FTM": "20", "FT_PCT": "69", "DREB": "26", "OREB": "9", "TREB": "35", "BLK": "0", "AST": "33", "STL": "16", "TOV": "16", "PF": "20", "PTS": "114", "MIN": "4" }, "H1": { "FG3A": "69", "FG3M": "44", "FG3_PCT": "64", "FGA": "2321", "FGM": "1110", "FG_PCT": "48", "FTA": "106", "FTM": "64", "FT_PCT": "60", "DREB": "35", "OREB": "23", "TREB": "58", "BLK": "00", "AST": "88", "STL": "53", "TOV": "34", "PTS": "3228", "MIN": "6060" }, "H2": { "FG3A": "45", "FG3M": "22", "FG3_PCT": "49", "FGA": "1920", "FGM": "1010", "FG_PCT": "53", "FTA": "85", "FTM": "55", "FT_PCT": "65", "DREB": "612", "OREB": "22", "TREB": "634", "BLK": "00", "AST": "98", "STL": "35", "TOV": "36", "PTS": "2727", "MIN": "6060" }, "Q1": { "FG3A": "6", "FG3M": "4", "FG3_PCT": "67", "FGA": "23", "FGM": "11", "FG_PCT": "48", "FTA": "10", "FTM": "6", "FT_PCT": "60", "DREB": "3", "OREB": "2", "TREB": "5", "BLK": "0", "AST": "8", "STL": "5", "TOV": "3", "PTS": "32", "MIN": "60" }, "Q2": { "FG3A": "9", "FG3M": "4", "FG3_PCT": "44", "FGA": "21", "FGM": "10", "FG_PCT": "48", "FTA": "6", "FTM": "4", "FT_PCT": "67", "DREB": "5", "OREB": "3", "TREB": "8", "BLK": "0", "AST": "8", "STL": "3", "TOV": "4", "PTS": "28", "MIN": "60" }, "Q3": { "FG3A": "4", "FG3M": "2", "FG3_PCT": "50", "FGA": "19", "FGM": "10", "FG_PCT": "53", "FTA": "8", "FTM": "5", "FT_PCT": "62", "DREB": "6", "OREB": "2", "TREB": "8", "BLK": "0", "AST": "9", "STL": "3", "TOV": "3", "PTS": "27", "MIN": "60" }, "Q4": { "FG3A": "5", "FG3M": "2", "FG3_PCT": "40", "FGA": "20", "FGM": "10", "FG_PCT": "50", "FTA": "5", "FTM": "5", "FT_PCT": "100", "DREB": "12", "OREB": "2", "TREB": "14", "BLK": "0", "AST": "8", "STL": "5", "TOV": "6", "PTS": "27", "MIN": "60" }, "OT": { "FG3A": "0", "FG3M": "0", "FG3_PCT": "0", "FGA": "0", "FGM": "0", "FG_PCT": "0", "FTA": "0", "FTM": "0", "FT_PCT": "0", "DREB": "0", "OREB": "0", "TREB": "0", "BLK": "0", "AST": "0", "STL": "0", "TOV": "0", "PTS": "0", "MIN": "0" } }, "box_score": [ { "first_name": "Chris", "last_name": "Bosh", "name": "Chris Bosh", "starter": "True", "MIN": "33", "FGM": "9", "FGA": "17", "FG_PCT": "53", "FG3M": "2", "FG3A": "5", "FG3_PCT": "40", "FTM": "10", "FTA": "11", "FT_PCT": "91", "OREB": "3", "DREB": "5", "TREB": "8", "AST": "4", "STL": "2", "BLK": "0", "TOV": "3", "PF": "2", "PTS": "30", "+/-": "10", "DOUBLE": "none" }, { "first_name": "Dwyane", "last_name": "Wade", "name": "Dwyane Wade", "starter": "True", "MIN": "32", "FGM": "4", "FGA": "18", "FG_PCT": "22", "FG3M": "0", "FG3A": "1", "FG3_PCT": "0", "FTM": "1", "FTA": "3", "FT_PCT": "33", "OREB": "1", "DREB": "2", "TREB": "3", "AST": "10", "STL": "3", "BLK": "0", "TOV": "6", "PF": "1", "PTS": "9", "+/-": "13", "DOUBLE": "none" }, { "first_name": "Luol", "last_name": "Deng", "name": "Luol Deng", "starter": "True", "MIN": "29", "FGM": "7", "FGA": "11", "FG_PCT": "64", "FG3M": "1", "FG3A": "3", "FG3_PCT": "33", "FTM": "0", "FTA": "1", "FT_PCT": "0", "OREB": "2", "DREB": "2", "TREB": "4", "AST": "2", "STL": "2", "BLK": "0", "TOV": "1", "PF": "0", "PTS": "15", "+/-": "4", "DOUBLE": "none" }, { "first_name": "Shawne", "last_name": "Williams", "name": "Shawne Williams", "starter": "True", "MIN": "29", "FGM": "5", "FGA": "9", "FG_PCT": "56", "FG3M": "3", "FG3A": "5", "FG3_PCT": "60", "FTM": "2", "FTA": "2", "FT_PCT": "100", "OREB": "0", "DREB": "4", "TREB": "4", "AST": "4", "STL": "1", "BLK": "0", "TOV": "1", "PF": "4", "PTS": "15", "+/-": "16", "DOUBLE": "none" }, { "first_name": "Norris", "last_name": "Cole", "name": "Norris Cole", "starter": "True", "MIN": "27", "FGM": "4", "FGA": "7", "FG_PCT": "57", "FG3M": "2", "FG3A": "4", "FG3_PCT": "50", "FTM": "0", "FTA": "0", "FT_PCT": "0", "OREB": "0", "DREB": "1", "TREB": "1", "AST": "4", "STL": "2", "BLK": "0", "TOV": "0", "PF": "1", "PTS": "10", "+/-": "6", "DOUBLE": "none" }, { "first_name": "Mario", "last_name": "Chalmers", "name": "Mario Chalmers", "starter": "False", "MIN": "25", "FGM": "6", "FGA": "9", "FG_PCT": "67", "FG3M": "2", "FG3A": "2", "FG3_PCT": "100", "FTM": "6", "FTA": "10", "FT_PCT": "60", "OREB": "0", "DREB": "2", "TREB": "2", "AST": "4", "STL": "4", "BLK": "0", "TOV": "0", "PF": "1", "PTS": "20", "+/-": "18", "DOUBLE": "none" }, { "first_name": "Shabazz", "last_name": "Napier", "name": "Shabazz Napier", "starter": "False", "MIN": "20", "FGM": "2", "FGA": "3", "FG_PCT": "67", "FG3M": "1", "FG3A": "2", "FG3_PCT": "50", "FTM": "0", "FTA": "0", "FT_PCT": "0", "OREB": "0", "DREB": "3", "TREB": "3", "AST": "4", "STL": "2", "BLK": "0", "TOV": "1", "PF": "4", "PTS": "5", "+/-": "11", "DOUBLE": "none" }, { "first_name": "Chris", "last_name": "Andersen", "name": "Chris Andersen", "starter": "False", "MIN": "17", "FGM": "0", "FGA": "2", "FG_PCT": "0", "FG3M": "0", "FG3A": "0", "FG3_PCT": "0", "FTM": "0", "FTA": "0", "FT_PCT": "0", "OREB": "1", "DREB": "2", "TREB": "3", "AST": "0", "STL": "0", "BLK": "0", "TOV": "0", "PF": "2", "PTS": "0", "+/-": "6", "DOUBLE": "none" }, { "first_name": "Josh", "last_name": "McRoberts", "name": "Josh McRoberts", "starter": "False", "MIN": "11", "FGM": "1", "FGA": "3", "FG_PCT": "33", "FG3M": "0", "FG3A": "1", "FG3_PCT": "0", "FTM": "1", "FTA": "2", "FT_PCT": "50", "OREB": "0", "DREB": "3", "TREB": "3", "AST": "0", "STL": "0", "BLK": "0", "TOV": "2", "PF": "3", "PTS": "3", "+/-": "1", "DOUBLE": "none" }, { "first_name": "James", "last_name": "Ennis", "name": "James Ennis", "starter": "False", "MIN": "7", "FGM": "2", "FGA": "3", "FG_PCT": "67", "FG3M": "1", "FG3A": "1", "FG3_PCT": "100", "FTM": "0", "FTA": "0", "FT_PCT": "0", "OREB": "1", "DREB": "1", "TREB": "2", "AST": "1", "STL": "0", "BLK": "0", "TOV": "0", "PF": "1", "PTS": "5", "+/-": "2", "DOUBLE": "none" }, { "first_name": "Justin", "last_name": "Hamilton", "name": "Justin Hamilton", "starter": "False", "MIN": "5", "FGM": "1", "FGA": "1", "FG_PCT": "100", "FG3M": "0", "FG3A": "0", "FG3_PCT": "0", "FTM": "0", "FTA": "0", "FT_PCT": "0", "OREB": "1", "DREB": "1", "TREB": "2", "AST": "0", "STL": "0", "BLK": "0", "TOV": "1", "PF": "0", "PTS": "2", "+/-": "3", "DOUBLE": "none" }, { "first_name": "Andre", "last_name": "Dawkins", "name": "Andre Dawkins", "starter": "False", "MIN": "1", "FGM": "0", "FGA": "0", "FG_PCT": "0", "FG3M": "0", "FG3A": "0", "FG3_PCT": "0", "FTM": "0", "FTA": "0", "FT_PCT": "0", "OREB": "0", "DREB": "0", "TREB": "0", "AST": "0", "STL": "0", "BLK": "0", "TOV": "1", "PF": "1", "PTS": "0", "+/-": "0", "DOUBLE": "none" }, { "first_name": "Shannon", "last_name": "Brown", "name": "Shannon Brown", "starter": "False", "MIN": "0", "FGM": "0", "FGA": "0", "FG_PCT": "0", "FG3M": "0", "FG3A": "0", "FG3_PCT": "0", "FTM": "0", "FTA": "0", "FT_PCT": "0", "OREB": "0", "DREB": "0", "TREB": "0", "AST": "0", "STL": "0", "BLK": "0", "TOV": "0", "PF": "0", "PTS": "0", "+/-": "0", "DOUBLE": "none" } ], "next_game": { "day": "2", "month": "November", "year": "2014", "dayname": "Sunday", "stadium": "American Airlines Arena", "city": "Miami", "opponent_name": "Raptors", "opponent_place": "Toronto", "is_home": "True" } } }, "summaries": [ "The Miami Heat ( 20 ) defeated the Philadelphia 76ers ( 0 - 3 ) 114 - 96 on Saturday . Chris Bosh scored a game - high 30 points to go with eight rebounds in 33 minutes . Josh McRoberts made his Heat debut after missing the entire preseason recovering from toe surgery . McRoberts came off the bench and played 11 minutes . Shawne Williams was once again the starter at power forward in McRoberts ' stead . Williams finished with 15 points and three three - pointers in 29 minutes . Mario Chalmers scored 18 points in 25 minutes off the bench . Luc Richard Mbah a Moute replaced Chris Johnson in the starting lineup for the Sixers on Saturday . Hollis Thompson shifted down to the starting shooting guard job to make room for Mbah a Moute . Mbah a Moute finished with nine points and seven rebounds in 19 minutes . K.J . McDaniels , who suffered a minor hip flexor injury in Friday 's game , was available and played 21 minutes off the bench , finishing with eight points and three blocks . Michael Carter-Williams is expected to be out until Nov. 13 , but Tony Wroten continues to put up impressive numbers in Carter-Williams ' absence . Wroten finished with a double - double of 21 points and 10 assists in 33 minutes . The Heat will complete a back - to - back set at home Sunday against the Tornoto Raptors . The Sixers ' next game is at home Monday against the Houston Rockets ." ] }Data Splits
The splits were created as per different NBA seasons. All the games in regular season (no play-offs) are added in the dataset
This dataset contains a data analytics problem in the classic sense ( Reiter, 2007 ). That is, there is a large amount of data from which insights need to be selected. Further, the insights should be both from simple shallow queries (such as dirext transcriptions of the properties of a subject, i.e., a player and their statistics), as well as aggregated (how a player has done over time). There is far more on the data side than is required to be realised, and indeed, could be practically realised. This depth of data analytics problem does not exist in other datasets.
Similar Datasetsno
Ability that the Dataset measuresMany, if not all aspects of data-to-text systems can be measured with this dataset. It has complex data analytics, meaninful document planning (10-15 sentence documents with a narrative structure), as well as microplanning and realisation requirements. Finding models to handle this volume of data, as well as methods for meaninfully evaluate generations is a very open question.
no
Additional Splits?no
For dataset discussion see Thomson et al, 2020
For evaluation see:
For a system using the relational database form of SportSett, see:
For recent systems using the Rotowire dataset, see:
Many, if not all aspects of data-to-text systems can be measured with this dataset. It has complex data analytics, meaninful document planning (10-15 sentence documents with a narrative structure), as well as microplanning and realisation requirements. Finding models to handle this volume of data, as well as methods for meaninfully evaluate generations is a very open question.
MetricsBLEU
Proposed EvaluationBLEU is the only off-the-shelf metric commonly used. Works have also used custom metrics like RG ( Wiseman et al, 2017 ), and a recent shared task explored other metrics and their corrolation with human evaluation ( Thomson & Reiter, 2021 ).
Previous results available?yes
Other Evaluation ApproachesMost results from prior works use the original Rotowire dataset, which has train/validation/test contamination. For results of BLEU and RG on the relational database format of SportSett, as a guide, see Thomson et al, 2020 .
Relevant Previous ResultsThe results on this dataset are largely unexplored, as is the selection of suitable metrics that correlate with human judgment. See Thomson et al, 2021 ( https://aclanthology.org/2021.inlg-1.23 ) for an overview, and Kasner et al (2021) for the best performing metric at the time of writing ( https://aclanthology.org/2021.inlg-1.25 ).
The references texts were taken from the existing dataset RotoWire-FG ( Wang, 2019 ), which is in turn based on Rotowire ( Wiseman et al, 2017 ). The rationale behind this dataset was to re-structure the data such that aggregate statistics over multiple games, as well as upcoming game schedules could be included, moving the dataset from snapshots of single games, to a format where almost everything that could be present in the reference texts could be found in the data.
Communicative GoalCreate a summary of a basketball, with insightful facts about the game, teams, and players, both within the game, withing periods during the game, and over the course of seasons/careers where appropriate. This is a data-to-text problem in the classic sense ( Reiter, 2007 ) in that it has a difficult data analystics state, in addition to ordering and transcription of selected facts.
Sourced from Different Sourcesyes
Source DetailsRotoWire-FG ( https://www.rotowire.com ). Wikipedia ( https://en.wikipedia.org/wiki/Main_Page ) Basketball Reference ( https://www.basketball-reference.com )
Found
Where was it found?Multiple websites
Language ProducersNone
Topics CoveredSummaries of basketball games (in the NBA).
Data Validationnot validated
Data PreprocessingIt retains the original tokenization scheme employed by Wang 2019
Was Data Filtered?manually
Filter CriteriaGames from the 2014 through 2018 seasons were selected. Within these seasons games are not filtered, all are present, but this was an arbitrary solution from the original RotoWirte-FG dataset.
none
Annotation Service?no
no
Justification for Using the DataThe dataset consits of a pre-existing dataset, as well as publically available facts.
unlikely
Categories of PIIgeneric PII
Any PII Identification?no identification
no
no
no
yes
Links and Summaries of Analysis WorkUnaware of any work, but, this is a dataset considting solely of summaries of mens professional basketball games. It does not cover different levels of the sport, or different genders, and all pronouns are likely to be male unless a specific player is referred to by other pronouns in the training text. This makes it difficult to train systems where gender can be specified as an attribute, although it is an interesting, open problem that could be investigated using the dataset.
Are the Language Producers Representative of the Language?No, it is very specifically American English from the sports journalism domain.
All information relating to persons is of public record.
public domain
Copyright Restrictions on the Language Datapublic domain
SportSett resolved the major overlap problems of RotoWire, although some overlap is unavoidable. For example, whilst it is not possible to find career totals and other historic information for all players (the data only goes back to 2014), it is possible to do so for some players. It is unavoidable that some data which is aggregated, exists in its base form in previous partitions. The season-based partition scheme heavily constrains this however.
Unsuited ApplicationsFactual accuray continues to be a problem, systems may incorrectly represent the facts of the game.
Discouraged Use CasesUsing the RG metric to maximise the number of true facts in a generate summary is not nececeraly