python pack_nbrs.py --max_nbrs=5 \
labeled_data.tfr \
unlabeled_data.tfr \
graph.tsv \
merged_examples.tfr
import neural_structured_learning as nsl
# Create a custom model — sequential, functional, or subclass.
base_model = tf.keras.Sequential(…)
# Wrap the custom model with graph regularization.
graph_config = nsl.configs.GraphRegConfig(
neighbor_config=nsl.configs.GraphNeighborConfig(max_neighbors=1))
graph_model = nsl.keras.GraphRegularization(base_model, graph_config)
# Compile, train, and evaluate.
graph_model.compile(optimizer=’adam’,
loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=[‘accuracy’])
graph_model.fit(train_dataset, epochs=5)
graph_model.evaluate(test_dataset)
import neural_structured_learning as nsl
# Create a base model — sequential, functional, or subclass.
model = tf.keras.Sequential(…)
# Wrap the model with adversarial regularization.
adv_config = nsl.configs.make_adv_reg_config(multiplier=0.2, adv_step_size=0.05)
adv_model = nsl.keras.AdversarialRegularization(model, adv_config)
# Compile, train, and evaluate.
adv_model.compile(optimizer=’adam’,
loss=’sparse_categorical_crossentropy’, metrics=[‘accuracy’])
adv_model.fit({‘feature’: x_train, ‘label’: y_train}, epochs=5) adv_model.evaluate({‘feature’: x_test, ‘label’: y_test})
https://medium.com/tensorflow/introducing-neural-structured-learning-in-tensorflow-5a802efd7afd