模型:
voidful/albert_chinese_large
This a albert_chinese_large model from Google's github converted by huggingface's script
Support AutoTokenizer
Since sentencepiece is not used in albert_chinese_base model you have to call BertTokenizer instead of AlbertTokenizer !!! we can eval it using an example on MaskedLM
由於 albert_chinese_base 模型沒有用 sentencepiece 用AlbertTokenizer會載不進詞表,因此需要改用BertTokenizer !!! 我們可以跑MaskedLM預測來驗證這個做法是否正確
from transformers import AutoTokenizer, AlbertForMaskedLM import torch from torch.nn.functional import softmax pretrained = 'voidful/albert_chinese_large' tokenizer = AutoTokenizer.from_pretrained(pretrained) model = AlbertForMaskedLM.from_pretrained(pretrained) inputtext = "今天[MASK]情很好" maskpos = tokenizer.encode(inputtext, add_special_tokens=True).index(103) input_ids = torch.tensor(tokenizer.encode(inputtext, add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=input_ids) loss, prediction_scores = outputs[:2] logit_prob = softmax(prediction_scores[0, maskpos],dim=-1).data.tolist() predicted_index = torch.argmax(prediction_scores[0, maskpos]).item() predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0] print(predicted_token, logit_prob[predicted_index])
Result: 心 0.9422469735145569