模型:
uer/roberta-base-chinese-extractive-qa
The model is used for extractive question answering. You can download the model from the link roberta-base-chinese-extractive-qa .
You can use the model directly with a pipeline for extractive question answering:
>>> from transformers import AutoModelForQuestionAnswering,AutoTokenizer,pipeline >>> model = AutoModelForQuestionAnswering.from_pretrained('uer/roberta-base-chinese-extractive-qa') >>> tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-chinese-extractive-qa') >>> QA = pipeline('question-answering', model=model, tokenizer=tokenizer) >>> QA_input = {'question': "著名诗歌《假如生活欺骗了你》的作者是",'context': "普希金从那里学习人民的语言,吸取了许多有益的养料,这一切对普希金后来的创作产生了很大的影响。这两年里,普希金创作了不少优秀的作品,如《囚徒》、《致大海》、《致凯恩》和《假如生活欺骗了你》等几十首抒情诗,叙事诗《努林伯爵》,历史剧《鲍里斯·戈都诺夫》,以及《叶甫盖尼·奥涅金》前六章。"} >>> QA(QA_input) {'score': 0.9766426682472229, 'start': 0, 'end': 3, 'answer': '普希金'}
Training data comes from three sources: cmrc2018 , webqa , and laisi . We only use the train set of three datasets.
The model is fine-tuned by UER-py on Tencent Cloud TI-ONE . We fine-tune three epochs with a sequence length of 512 on the basis of the pre-trained model chinese_roberta_L-12_H-768 . At the end of each epoch, the model is saved when the best performance on development set is achieved.
python3 run_cmrc.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \ --vocab_path models/google_zh_vocab.txt \ --train_path extractive_qa.json \ --dev_path datasets/cmrc2018/dev.json \ --output_model_path models/extractive_qa_model.bin \ --learning_rate 3e-5 --epochs_num 3 --batch_size 32 --seq_length 512
Finally, we convert the fine-tuned model into Huggingface's format:
python3 scripts/convert_bert_extractive_qa_from_uer_to_huggingface.py --input_model_path extractive_qa_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 12
@article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} }