(Japanese caption : 日本語の (抽出型) 質問応答のモデル)
This model is a fine-tuned version of rinna/japanese-roberta-base (pre-trained RoBERTa model provided by rinna Co., Ltd.) trained for extractive question answering.
The model is fine-tuned on JaQuAD dataset provided by Skelter Labs, in which data is collected from Japanese Wikipedia articles and annotated by a human.
When running with a dedicated pipeline :
from transformers import pipeline model_name = "tsmatz/roberta_qa_japanese" qa_pipeline = pipeline( "question-answering", model=model_name, tokenizer=model_name) result = qa_pipeline( question = "決勝トーナメントで日本に勝ったのはどこでしたか。", context = "日本は予選リーグで強豪のドイツとスペインに勝って決勝トーナメントに進んだが、クロアチアと対戦して敗れた。", align_to_words = False, ) print(result)
When manually running through forward pass :
import torch import numpy as np from transformers import AutoModelForQuestionAnswering, AutoTokenizer model_name = "tsmatz/roberta_qa_japanese" model = (AutoModelForQuestionAnswering .from_pretrained(model_name)) tokenizer = AutoTokenizer.from_pretrained(model_name) def inference_answer(question, context): question = question context = context test_feature = tokenizer( question, context, max_length=318, ) with torch.no_grad(): outputs = model(torch.tensor([test_feature["input_ids"]])) start_logits = outputs.start_logits.cpu().numpy() end_logits = outputs.end_logits.cpu().numpy() answer_ids = test_feature["input_ids"][np.argmax(start_logits):np.argmax(end_logits)+1] return "".join(tokenizer.batch_decode(answer_ids)) question = "決勝トーナメントで日本に勝ったのはどこでしたか。" context = "日本は予選リーグで強豪のドイツとスペインに勝って決勝トーナメントに進んだが、クロアチアと対戦して敗れた。" answer_pred = inference_answer(question, context) print(answer_pred)
You can download the source code for fine-tuning from here .
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.1293 | 0.13 | 150 | 1.0311 |
1.1965 | 0.26 | 300 | 0.6723 |
1.022 | 0.39 | 450 | 0.4838 |
0.9594 | 0.53 | 600 | 0.5174 |
0.9187 | 0.66 | 750 | 0.4671 |
0.8229 | 0.79 | 900 | 0.4650 |
0.71 | 0.92 | 1050 | 0.2648 |
0.5436 | 1.05 | 1200 | 0.2665 |
0.5045 | 1.19 | 1350 | 0.2686 |
0.5025 | 1.32 | 1500 | 0.2082 |
0.5213 | 1.45 | 1650 | 0.1715 |
0.4648 | 1.58 | 1800 | 0.1563 |
0.4698 | 1.71 | 1950 | 0.1488 |
0.4823 | 1.84 | 2100 | 0.1050 |
0.4482 | 1.97 | 2250 | 0.0821 |
0.2755 | 2.11 | 2400 | 0.0898 |
0.2834 | 2.24 | 2550 | 0.0964 |
0.2525 | 2.37 | 2700 | 0.0533 |
0.2606 | 2.5 | 2850 | 0.0561 |
0.2467 | 2.63 | 3000 | 0.0601 |
0.2799 | 2.77 | 3150 | 0.0562 |
0.2497 | 2.9 | 3300 | 0.0516 |