模型:

timm/resnet18.a1_in1k

英文

resnet18.a1_in1k模型卡片

一个ResNet-B图片分类模型。

该模型特点如下:

  • ReLU激活
  • 单层7x7卷积加池化
  • 1x1卷积快捷通道下采样

使用下面描述的timm的配方模板,在ImageNet-1k上进行训练。

配方细节:

  • ResNet Strikes Back A1配方
  • 使用BCE损失的LAMB优化器
  • 使用余弦学习率调度与预热

模型细节

模型用法

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('resnet18.a1_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'resnet18.a1_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 64, 112, 112])
    #  torch.Size([1, 64, 56, 56])
    #  torch.Size([1, 128, 28, 28])
    #  torch.Size([1, 256, 14, 14])
    #  torch.Size([1, 512, 7, 7])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'resnet18.a1_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 512, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型对比

在timm中探索该模型的数据集和运行时指标 model results

model img_size top1 top5 param_count gmacs macts img/sec
12310321 320 86.72 98.17 93.6 35.2 69.7 451
12310321 288 86.51 98.08 93.6 28.5 56.4 560
12312321 288 86.49 98.03 93.6 28.5 56.4 557
12312321 224 85.96 97.82 93.6 17.2 34.2 923
12314321 224 85.11 97.44 468.5 87.3 91.1 254
12315321 416 85.0 97.12 191.9 108.4 213.8 134
12316321 352 84.96 97.22 102.1 50.2 101.2 291
12316321 320 84.73 97.18 102.1 41.5 83.7 353
12318321 384 84.71 96.99 164.0 77.6 154.7 183
12319321 288 84.57 97.08 93.6 28.5 56.4 557
12320321 320 84.45 97.08 93.2 31.5 67.8 446
12321321 352 84.43 96.97 129.9 51.1 105.5 280
12322321 288 84.36 96.92 93.6 27.6 53.0 595
12323321 320 84.35 97.04 66.8 24.1 47.7 610
12318321 288 84.3 96.94 164.0 43.7 87.1 333
12325321 224 84.28 97.17 88.8 16.5 31.2 1100
12315321 320 84.24 96.86 191.9 64.2 126.6 228
12327321 288 84.19 96.87 93.6 27.2 51.6 613
12328321 224 84.18 97.19 194.0 36.3 51.2 581
12329321 288 84.11 97.11 44.6 15.1 29.0 1144
12330321 320 83.97 96.82 64.7 31.2 67.3 518
12320321 256 83.87 96.75 93.2 20.2 43.4 692
12319321 224 83.86 96.65 93.6 17.2 34.2 923
12333321 320 83.72 96.61 86.6 24.3 48.1 617
12323321 256 83.69 96.78 66.8 15.4 30.6 943
12322321 224 83.68 96.61 93.6 16.7 32.0 986
12336321 320 83.67 96.74 60.2 24.1 47.7 706
12321321 256 83.59 96.61 129.9 27.1 55.8 526
12327321 224 83.58 96.4 93.6 16.5 31.2 1013
12329321 224 83.54 96.83 44.6 9.1 17.6 1864
12340321 288 83.46 96.54 60.2 19.1 37.3 904
12341321 224 83.35 96.85 194.0 36.3 51.2 582
12330321 256 83.23 96.53 64.7 20.0 43.1 809
12343321 224 83.22 96.75 44.2 8.0 21.2 1814
12344321 288 83.16 96.38 83.5 25.7 51.6 590
12336321 256 83.14 96.38 60.2 15.4 30.5 1096
12346321 320 83.02 96.45 44.6 16.5 34.8 992
12347321 288 82.98 96.54 44.6 13.4 28.2 1077
12348321 224 82.98 96.25 83.5 15.5 31.2 989
12333321 256 82.86 96.28 86.6 15.6 30.8 951
12350321 224 82.83 96.22 88.8 16.5 31.2 1099
12340321 224 82.8 96.13 60.2 11.6 22.6 1486
12352321 288 82.8 96.32 44.6 13.0 26.8 1291
12353321 288 82.74 95.71 60.2 19.1 37.3 905
12354321 224 82.69 96.63 88.8 16.5 31.2 1100
12355321 288 82.62 95.75 60.2 19.1 37.3 904
12356321 288 82.61 96.49 25.6 8.9 20.6 1729
12357321 288 82.53 96.13 36.8 9.9 21.5 1773
12358321 224 82.5 96.02 126.9 22.8 21.2 1078
12344321 224 82.46 95.92 83.5 15.5 31.2 987
12360321 288 82.36 96.18 35.7 8.1 20.9 1964
12361321 320 82.35 96.14 25.6 8.8 24.1 1386
12362321 288 82.31 95.63 44.6 13.0 26.8 1291
12363321 288 82.29 96.01 63.6 13.6 28.5 1078
12364321 224 82.29 96.0 60.2 11.6 22.6 1484
12365321 288 82.27 96.06 68.9 18.9 23.8 1176
12346321 256 82.26 96.07 44.6 10.6 22.2 1542
12367321 288 82.24 95.73 44.6 13.0 26.8 1290
12368321 288 82.2 96.14 27.6 7.0 23.8 1547
12347321 224 82.18 96.05 44.6 8.1 17.1 1771
12370321 224 82.17 96.22 25.0 4.3 14.4 2943
12371321 288 82.12 95.65 25.6 7.1 19.6 1704
12372321 288 82.03 95.94 25.0 7.0 23.8 1745
12373321 288 82.0 96.15 24.9 5.8 12.7 1787
12357321 256 81.99 95.85 36.8 7.8 17.0 2230
12350321 176 81.98 95.72 88.8 10.3 19.4 1768
12353321 224 81.97 95.24 60.2 11.6 22.6 1486
12352321 224 81.93 95.75 44.6 7.8 16.2 2122
12378321 224 81.9 95.77 44.6 7.8 16.2 2118
12379321 224 81.84 96.1 194.0 36.3 51.2 583
12360321 256 81.78 95.94 35.7 6.4 16.6 2471
12355321 224 81.77 95.22 60.2 11.6 22.6 1485
12356321 224 81.74 96.06 25.6 5.4 12.4 2813
12383321 288 81.65 95.54 25.6 7.1 19.6 1703
12384321 288 81.64 95.88 25.6 7.2 19.7 1694
12385321 224 81.62 96.04 88.8 16.5 31.2 1101
12386321 224 81.61 95.76 68.9 11.4 14.4 1930
12387321 288 81.61 95.83 25.6 8.5 19.2 1868
12362321 224 81.5 95.16 44.6 7.8 16.2 2125
12389321 288 81.48 95.16 25.0 7.0 23.8 1745
12390321 288 81.47 95.71 25.9 6.9 18.6 2071
12365321 224 81.45 95.53 68.9 11.4 14.4 1929
12392321 288 81.44 95.22 25.6 7.2 19.7 1908
12361321 256 81.44 95.67 25.6 5.6 15.4 2168
12394321 288 81.4 95.82 30.2 6.8 13.9 2132
12395321 288 81.37 95.74 25.6 7.2 19.7 1910
12367321 224 81.32 95.19 44.6 7.8 16.2 2125
12397321 288 81.3 95.65 28.1 6.8 18.4 1803
12398321 288 81.3 95.11 25.0 7.0 23.8 1746
12368321 224 81.27 95.62 27.6 4.3 14.4 2591
12371321 224 81.26 95.16 25.6 4.3 11.8 2823
123101321 288 81.23 95.54 15.7 4.8 19.6 2117
123102321 224 81.23 95.35 115.1 20.8 38.7 545
123103321 288 81.22 95.11 25.6 6.8 18.4 2089
123104321 288 81.22 95.63 25.6 6.8 18.4 676
123105321 288 81.18 95.09 25.6 7.2 19.7 1908
123106321 224 81.18 95.98 25.6 4.1 11.1 3455
123107321 224 81.17 95.34 25.0 4.3 14.4 2933
12372321 224 81.1 95.33 25.0 4.3 14.4 2934
123109321 288 81.1 95.23 28.1 6.8 18.4 1801
123110321 288 81.1 95.12 28.1 6.8 18.4 1799
123111321 224 81.02 95.41 60.3 12.9 25.0 1347
123112321 288 80.97 95.44 25.6 6.8 18.4 2085
12390321 256 80.94 95.45 25.9 5.4 14.7 2571
123114321 224 80.93 95.73 44.2 8.0 21.2 1814
123115321 288 80.91 95.55 25.6 6.8 18.4 2084
123116321 224 80.9 95.31 49.0 8.0 21.3 1585
123117321 224 80.9 95.3 88.2 15.5 31.2 918
123118321 288 80.86 95.52 25.6 6.8 18.4 2085
123119321 224 80.85 95.43 25.6 4.1 11.1 3450
12383321 224 80.84 95.02 25.6 4.3 11.8 2821
12373321 224 80.79 95.62 24.9 3.5 7.7 2961
123122321 288 80.79 95.36 19.8 6.0 14.8 2506
123123321 288 80.79 95.58 19.9 4.2 10.6 2349
123124321 288 80.78 94.99 25.6 6.8 18.4 2088
123125321 288 80.71 95.43 25.6 6.8 18.4 2087
123126321 288 80.7 95.39 25.0 7.0 23.8 1749
12363321 192 80.69 95.24 63.6 6.0 12.7 2270
12392321 224 80.68 94.71 25.6 4.4 11.9 3162
123129321 288 80.68 95.36 19.7 6.0 14.8 2637
123130321 224 80.67 95.3 25.6 4.1 11.1 3452
123131321 288 80.67 95.42 25.0 7.4 25.1 1626
12387321 224 80.63 95.21 25.6 5.2 11.6 3034
12384321 224 80.61 95.32 25.6 4.4 11.9 2813
123134321 224 80.61 94.99 83.5 15.5 31.2 989
123135321 288 80.6 95.31 19.9 6.0 14.8 2578
123101321 256 80.57 95.17 15.7 3.8 15.5 2710
123137321 224 80.56 95.0 60.2 11.6 22.6 1483
12395321 224 80.53 95.16 25.6 4.4 11.9 3164
12389321 224 80.53 94.46 25.0 4.3 14.4 2930
12358321 176 80.48 94.98 126.9 14.3 13.2 1719
123141321 224 80.47 95.2 60.2 11.8 23.4 1428
123142321 288 80.45 95.32 25.6 6.8 18.4 2086
12394321 224 80.45 95.24 30.2 4.1 8.4 3530
12398321 224 80.45 94.63 25.0 4.3 14.4 2936
12386321 176 80.43 95.09 68.9 7.3 9.0 3015
123146321 224 80.42 95.01 44.6 8.1 17.0 2007
123103321 224 80.38 94.6 25.6 4.1 11.1 3461
123122321 256 80.36 95.1 19.8 4.8 11.7 3267
123149321 224 80.34 94.93 44.2 8.0 21.2 1814
123150321 224 80.32 95.4 25.0 4.3 14.4 2941
123151321 224 80.28 95.16 44.7 9.2 18.6 1851
12397321 224 80.26 95.08 28.1 4.1 11.1 2972
123153321 288 80.24 95.24 25.6 8.5 19.9 1523
123105321 224 80.22 94.63 25.6 4.4 11.9 3162
12364321 176 80.2 94.64 60.2 7.2 14.0 2346
123109321 224 80.08 94.74 28.1 4.1 11.1 2969
123129321 256 80.08 94.97 19.7 4.8 11.7 3284
123135321 256 80.06 94.99 19.9 4.8 11.7 3216
123104321 224 80.06 94.95 25.6 4.1 11.1 1109
123110321 224 80.02 94.71 28.1 4.1 11.1 2962
123161321 288 79.97 95.05 25.6 6.8 18.4 2086
123162321 224 79.92 94.84 60.2 11.8 23.4 1455
123163321 224 79.91 94.82 27.6 4.3 14.4 2591
123112321 224 79.91 94.67 25.6 4.1 11.1 3456
12378321 176 79.9 94.6 44.6 4.9 10.1 3341
123166321 224 79.89 94.97 35.7 4.5 12.1 2774
123118321 224 79.88 94.87 25.6 4.1 11.1 3455
123168321 320 79.86 95.07 16.0 5.2 16.4 2168
123124321 224 79.85 94.56 25.6 4.1 11.1 3460
123170321 288 79.83 94.97 25.6 6.8 18.4 2087
123171321 224 79.82 94.62 44.6 7.8 16.2 2114
123126321 224 79.76 94.6 25.0 4.3 14.4 2943
123115321 224 79.74 94.95 25.6 4.1 11.1 3455
123123321 224 79.74 94.87 19.9 2.5 6.4 3929
123175321 288 79.71 94.83 19.7 6.0 14.8 2710
123176321 224 79.68 94.74 60.2 11.6 22.6 1486
123131321 224 79.67 94.87 25.0 4.5 15.2 2729
123178321 288 79.63 94.91 25.6 6.8 18.4 2086
123179321 224 79.56 94.72 25.6 4.3 11.8 2805
123180321 224 79.53 94.58 44.6 8.1 17.0 2062
123125321 224 79.52 94.61 25.6 4.1 11.1 3459
123119321 176 79.42 94.64 25.6 2.6 6.9 5397
123183321 288 79.4 94.66 18.0 5.9 14.6 2752
123142321 224 79.38 94.57 25.6 4.1 11.1 3459
123107321 176 79.37 94.3 25.0 2.7 9.0 4577
123186321 224 79.36 94.43 25.0 4.3 14.4 2942
123187321 224 79.31 94.52 88.8 16.5 31.2 1100
123188321 224 79.31 94.53 44.6 7.8 16.2 2125
123153321 224 79.31 94.63 25.6 5.2 12.0 2524
123130321 176 79.27 94.49 25.6 2.6 6.9 5404
123191321 224 79.25 94.31 25.0 4.3 14.4 2931
123192321 224 79.22 94.84 25.6 4.1 11.1 3451
123175321 256 79.21 94.56 19.7 4.8 11.7 3392
123194321 224 79.07 94.48 25.6 4.4 11.9 3162
123161321 224 79.03 94.38 25.6 4.1 11.1 3453
123196321 224 79.01 94.39 25.6 4.1 11.1 3461
123183321 256 79.01 94.37 18.0 4.6 11.6 3440
123168321 256 78.9 94.54 16.0 3.4 10.5 3421
123137321 160 78.89 94.11 60.2 5.9 11.5 2745
123200321 224 78.84 94.28 126.9 22.8 21.2 1079
123201321 288 78.83 94.24 16.8 4.5 16.8 2251
123170321 224 78.81 94.32 25.6 4.1 11.1 3454
123203321 288 78.74 94.33 16.8 4.5 16.7 2264
123204321 224 78.72 94.23 25.7 5.5 13.5 2796
123205321 224 78.71 94.24 25.6 4.4 11.9 3154
123206321 224 78.47 94.09 68.9 11.4 14.4 1934
123178321 224 78.46 94.27 25.6 4.1 11.1 3454
123208321 288 78.43 94.35 21.8 6.5 7.5 3291
123209321 288 78.42 94.04 10.5 3.1 13.3 3226
123210321 320 78.33 94.13 16.0 5.2 16.4 2391
123211321 224 78.32 94.04 60.2 11.6 22.6 1487
123212321 288 78.28 94.1 10.4 3.1 13.3 3062
123213321 256 78.25 94.1 10.7 2.5 12.5 3393
123214321 224 78.06 93.78 25.6 4.1 11.1 3450
123215321 224 78.0 93.99 25.6 4.4 11.9 3286
123216321 288 78.0 93.91 10.3 3.1 13.3 3297
123203321 224 77.98 93.75 16.8 2.7 10.1 3841
123218321 288 77.92 93.77 21.8 6.1 6.2 3609
123171321 160 77.88 93.71 44.6 4.0 8.3 3926
123210321 256 77.87 93.84 16.0 3.4 10.5 3772
123212321 256 77.86 93.79 10.4 2.4 10.5 4263
123166321 160 77.82 93.81 35.7 2.3 6.2 5238
123209321 256 77.81 93.82 10.5 2.4 10.5 4183
123179321 160 77.79 93.6 25.6 2.2 6.0 5329
123191321 160 77.73 93.32 25.0 2.2 7.4 5576
123226321 224 77.61 93.7 25.0 4.3 14.4 2944
123201321 224 77.59 93.61 16.8 2.7 10.2 3807
123228321 224 77.58 93.72 25.6 4.1 11.1 3455
123216321 256 77.44 93.56 10.3 2.4 10.5 4284
123230321 288 77.41 93.63 16.0 4.3 13.5 2907
123231321 224 77.38 93.54 44.6 7.8 16.2 2125
123205321 160 77.22 93.27 25.6 2.2 6.1 5982
123233321 288 77.17 93.47 10.3 3.1 13.3 3392
123234321 288 77.15 93.27 21.8 6.1 6.2 3615
123208321 224 77.1 93.37 21.8 3.9 4.5 5436
123236321 224 77.02 93.07 28.1 4.1 11.1 2952
123233321 256 76.78 93.13 10.3 2.4 10.5 4410
123230321 224 76.7 93.17 16.0 2.6 8.2 4859
123239321 288 76.5 93.35 21.8 6.1 6.2 3617
123218321 224 76.42 92.87 21.8 3.7 3.7 5984
123241321 288 76.35 93.18 16.0 3.9 12.2 3331
123242321 224 76.13 92.86 25.6 4.1 11.1 3457
123214321 160 75.96 92.5 25.6 2.1 5.7 6490
123234321 224 75.52 92.44 21.8 3.7 3.7 5991
123241321 224 75.3 92.58 16.0 2.4 7.4 5583
123239321 224 75.16 92.18 21.8 3.7 3.7 5994
123236321 160 75.1 92.08 28.1 2.1 5.7 5513
123248321 224 74.57 91.98 21.8 3.7 3.7 5984
123249321 288 73.81 91.83 11.7 3.4 5.4 5196
123250321 224 73.32 91.42 21.8 3.7 3.7 5979
123251321 224 73.28 91.73 11.7 1.8 2.5 10213
123252321 288 73.16 91.03 11.7 3.0 4.1 6050
123253321 224 72.98 91.11 21.8 3.7 3.7 5967
123254321 224 72.6 91.42 11.7 1.8 2.5 10213
123255321 288 72.37 90.59 11.7 3.0 4.1 6051
123256321 224 72.26 90.31 10.1 1.7 5.8 7026
123249321 224 72.26 90.68 11.7 2.1 3.3 8707
123252321 224 71.49 90.07 11.7 1.8 2.5 10187
123256321 176 71.31 89.69 10.1 1.1 3.6 10970
123260321 224 70.84 89.76 11.7 1.8 2.5 10210
123255321 224 70.64 89.47 11.7 1.8 2.5 10194
123253321 160 70.56 89.52 21.8 1.9 1.9 10737
123263321 224 69.76 89.07 11.7 1.8 2.5 10205
123264321 224 68.34 88.03 5.4 1.1 2.4 13079
123265321 224 68.25 88.17 11.7 1.8 2.5 10167
123264321 176 66.71 86.96 5.4 0.7 1.5 20327
123265321 160 65.66 86.26 11.7 0.9 1.3 18229

引用

@inproceedings{wightman2021resnet,
  title={ResNet strikes back: An improved training procedure in timm},
  author={Wightman, Ross and Touvron, Hugo and Jegou, Herve},
  booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{He2015,
  author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
  title = {Deep Residual Learning for Image Recognition},
  journal = {arXiv preprint arXiv:1512.03385},
  year = {2015}
}