模型:
sb3/ppo_lstm-PendulumNoVel-v1
This is a trained model of a RecurrentPPO agent playing PendulumNoVel-v1 using the stable-baselines3 library and the RL Zoo .
The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo SB3: https://github.com/DLR-RM/stable-baselines3 SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
# Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo ppo_lstm --env PendulumNoVel-v1 -orga sb3 -f logs/ python enjoy.py --algo ppo_lstm --env PendulumNoVel-v1 -f logs/
python train.py --algo ppo_lstm --env PendulumNoVel-v1 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo ppo_lstm --env PendulumNoVel-v1 -f logs/ -orga sb3
OrderedDict([('clip_range', 0.2), ('ent_coef', 0.0), ('gae_lambda', 0.95), ('gamma', 0.9), ('learning_rate', 0.001), ('n_envs', 4), ('n_epochs', 10), ('n_steps', 1024), ('n_timesteps', 100000.0), ('normalize', True), ('policy', 'MlpLstmPolicy'), ('policy_kwargs', 'dict( ortho_init=False, activation_fn=nn.ReLU, ' 'lstm_hidden_size=64, enable_critic_lstm=True, ' 'net_arch=[dict(pi=[64], vf=[64])] )'), ('sde_sample_freq', 4), ('use_sde', True), ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])