模型:
sb3/dqn-MountainCar-v0
This is a trained model of a DQN agent playing MountainCar-v0 using the stable-baselines3 library and the RL Zoo .
The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo SB3: https://github.com/DLR-RM/stable-baselines3 SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
# Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env MountainCar-v0 -orga sb3 -f logs/ python enjoy.py --algo dqn --env MountainCar-v0 -f logs/
python train.py --algo dqn --env MountainCar-v0 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env MountainCar-v0 -f logs/ -orga sb3
OrderedDict([('batch_size', 128), ('buffer_size', 10000), ('exploration_final_eps', 0.07), ('exploration_fraction', 0.2), ('gamma', 0.98), ('gradient_steps', 8), ('learning_rate', 0.004), ('learning_starts', 1000), ('n_timesteps', 120000.0), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(net_arch=[256, 256])'), ('target_update_interval', 600), ('train_freq', 16), ('normalize', False)])