模型:
sb3/demo-hf-CartPole-v1
This is a pre-trained model of a PPO agent playing CartPole-v1 using the stable-baselines3 library.
Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:
pip install stable-baselines3 pip install huggingface_sb3
Then, you can use the model like this:
import gym from huggingface_sb3 import load_from_hub from stable_baselines3 import PPO from stable_baselines3.common.evaluation import evaluate_policy # Retrieve the model from the hub ## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name}) ## filename = name of the model zip file from the repository checkpoint = load_from_hub( repo_id="sb3/demo-hf-CartPole-v1", filename="ppo-CartPole-v1", ) model = PPO.load(checkpoint) # Evaluate the agent and watch it eval_env = gym.make("CartPole-v1") mean_reward, std_reward = evaluate_policy( model, eval_env, render=True, n_eval_episodes=5, deterministic=True, warn=False ) print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
Mean_reward: 500.0