模型:
sb3/a2c-BreakoutNoFrameskip-v4
This is a trained model of a A2C agent playing BreakoutNoFrameskip-v4 using the stable-baselines3 library and the RL Zoo .
The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo SB3: https://github.com/DLR-RM/stable-baselines3 SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
# Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo a2c --env BreakoutNoFrameskip-v4 -orga sb3 -f logs/ python enjoy.py --algo a2c --env BreakoutNoFrameskip-v4 -f logs/
python train.py --algo a2c --env BreakoutNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo a2c --env BreakoutNoFrameskip-v4 -f logs/ -orga sb3
OrderedDict([('ent_coef', 0.01), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('frame_stack', 4), ('n_envs', 16), ('n_timesteps', 10000000.0), ('policy', 'CnnPolicy'), ('policy_kwargs', 'dict(optimizer_class=RMSpropTFLike, ' 'optimizer_kwargs=dict(eps=1e-5))'), ('vf_coef', 0.25), ('normalize', False)])