模型:

rohanrajpal/bert-base-multilingual-codemixed-cased-sentiment

中文

BERT codemixed base model for hinglish (cased)

Model description

Input for the model: Any codemixed hinglish text Output for the model: Sentiment. (0 - Negative, 1 - Neutral, 2 - Positive)

I took a bert-base-multilingual-cased model from Huggingface and finetuned it on SAIL 2017 dataset.

Performance of this model on the SAIL 2017 dataset

metric score
acc 0.588889
f1 0.582678
acc_and_f1 0.585783
precision 0.586516
recall 0.588889

Intended uses & limitations

How to use

Here is how to use this model to get the features of a given text in PyTorch :

# You can include sample code which will be formatted
from transformers import BertTokenizer, BertModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("rohanrajpal/bert-base-codemixed-uncased-sentiment")
model = AutoModelForSequenceClassification.from_pretrained("rohanrajpal/bert-base-codemixed-uncased-sentiment")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)

and in TensorFlow :

from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('rohanrajpal/bert-base-codemixed-uncased-sentiment')
model = TFBertModel.from_pretrained("rohanrajpal/bert-base-codemixed-uncased-sentiment")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
Limitations and bias

Coming soon!

Training data

I trained on the SAIL 2017 dataset link on this pretrained model .

Training procedure

No preprocessing.

Eval results

BibTeX entry and citation info

@inproceedings{khanuja-etal-2020-gluecos,
    title = "{GLUEC}o{S}: An Evaluation Benchmark for Code-Switched {NLP}",
    author = "Khanuja, Simran  and
      Dandapat, Sandipan  and
      Srinivasan, Anirudh  and
      Sitaram, Sunayana  and
      Choudhury, Monojit",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.acl-main.329",
    pages = "3575--3585"
}