模型:
philschmid/distilbart-cnn-12-6-samsum
This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.
For more information look at:
{ "dataset_name": "samsum", "do_eval": true, "do_train": true, "fp16": true, "learning_rate": 5e-05, "model_name_or_path": "sshleifer/distilbart-cnn-12-6", "num_train_epochs": 3, "output_dir": "/opt/ml/model", "per_device_eval_batch_size": 8, "per_device_train_batch_size": 8, "seed": 7 }
key | value |
---|---|
epoch | 3.0 |
init_mem_cpu_alloc_delta | 180338 |
init_mem_cpu_peaked_delta | 18282 |
init_mem_gpu_alloc_delta | 1222242816 |
init_mem_gpu_peaked_delta | 0 |
train_mem_cpu_alloc_delta | 6971403 |
train_mem_cpu_peaked_delta | 640733 |
train_mem_gpu_alloc_delta | 4910897664 |
train_mem_gpu_peaked_delta | 23331969536 |
train_runtime | 155.2034 |
train_samples | 14732 |
train_samples_per_second | 2.242 |
key | value |
---|---|
epoch | 3.0 |
eval_loss | 1.4209576845169067 |
eval_mem_cpu_alloc_delta | 868003 |
eval_mem_cpu_peaked_delta | 18250 |
eval_mem_gpu_alloc_delta | 0 |
eval_mem_gpu_peaked_delta | 328244736 |
eval_runtime | 0.6088 |
eval_samples | 818 |
eval_samples_per_second | 1343.647 |
from transformers import pipeline summarizer = pipeline("summarization", model="philschmid/distilbart-cnn-12-6-samsum") conversation = '''Jeff: Can I train a ? Transformers model on Amazon SageMaker? Philipp: Sure you can use the new Hugging Face Deep Learning Container. Jeff: ok. Jeff: and how can I get started? Jeff: where can I find documentation? Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face ''' nlp(conversation)