模型:
nvidia/stt_en_fastconformer_transducer_large
任务:
自动语音识别数据集:
librispeech_asr fisher_corpus Switchboard-1 WSJ-0 WSJ-1 National-Singapore-Corpus-Part-1 National-Singapore-Corpus-Part-6 vctk VoxPopuli-(EN) Europarl-ASR-(EN) Multilingual-LibriSpeech-(2000-hours) mozilla-foundation/common_voice_8_0 MLCommons/peoples_speech 3AMLCommons/peoples_speech 3Amozilla-foundation/common_voice_8_0 3AMultilingual-LibriSpeech-(2000-hours) 3AEuroparl-ASR-(EN) 3AVoxPopuli-(EN) 3Avctk 3ANational-Singapore-Corpus-Part-6 3ANational-Singapore-Corpus-Part-1 3AWSJ-1 3AWSJ-0 3ASwitchboard-1 3Afisher_corpus 3Alibrispeech_asr语言:
en预印本库:
arxiv:2305.05084许可:
cc-by-4.0| | |
This model transcribes speech in lower case English alphabet. It is a "large" version of FastConformer Transducer (around 114M parameters) model. See the model architecture section and NeMo documentation for complete architecture details.
To train, fine-tune or play with the model you will need to install NVIDIA NeMo . We recommend you install it after you've installed latest Pytorch version.
pip install nemo_toolkit['all']
The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained(model_name="nvidia/stt_en_fastconformer_transducer_large")
First, let's get a sample
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
Then simply do:
asr_model.transcribe(['2086-149220-0033.wav'])
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="nvidia/stt_en_fastconformer_transducer_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
This model accepts 16000 Hz Mono-channel Audio (wav files) as input.
This model provides transcribed speech as a string for a given audio sample.
FastConformer [1] is an optimized version of the Conformer model with 8x depthwise-separable convolutional downsampling. The model is trained in a multitask setup with a Transducer decoder loss. You may find more information on the details of FastConformer here: Fast-Conformer Model .
The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this example script and this base config .
The tokenizers for these models were built using the text transcripts of the train set with this script .
The model in this collection is trained on a composite dataset (NeMo ASRSet En) comprising several thousand hours of English speech:
The performance of Automatic Speech Recognition models is measuring using Word Error Rate. Since this dataset is trained on multiple domains and a much larger corpus, it will generally perform better at transcribing audio in general.
The following tables summarizes the performance of the available models in this collection with the Transducer decoder. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
Version | Tokenizer | Vocabulary Size | LS test-other | LS test-clean | WSJ Eval92 | WSJ Dev93 | NSC Part 1 | MLS Test | MCV Test 7.0 | Train Dataset |
---|---|---|---|---|---|---|---|---|---|---|
1.18.0 | SentencePiece Unigram | 1024 | 3.8 | 1.8 | 1.4 | 2.4 | 5.5 | 5.8 | 7.5 | NeMo ASRSET 3.0 |
Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
NVIDIA Riva , is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded. Additionally, Riva provides:
Although this model isn’t supported yet by Riva, the list of supported models is here . Check out Riva live demo .
[1] Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition
[2] Google Sentencepiece Tokenizer
License to use this model is covered by the CC-BY-4.0 . By downloading the public and release version of the model, you accept the terms and conditions of the CC-BY-4.0 license.
.hf-sanitized.hf-sanitized-liB6pS1nHo9xrMeAgwHYI img {display: inline;}