模型:
naclbit/trinart_stable_diffusion_v2
This model is NOT the 19.2M images Characters Model on TrinArt, but an improved version of the original Trin-sama Twitter bot model. This model is intended to retain the original SD's aesthetics as much as possible while nudging the model to anime/manga style.
Other TrinArt models can be found at:
https://huggingface.co/naclbit/trinart_derrida_characters_v2_stable_diffusion
https://huggingface.co/naclbit/trinart_characters_19.2m_stable_diffusion_v1
The model has been ported to diffusers by ayan4m1 and can easily be run from one of the branches:
For more information, please have a look at the "Three flavors" section .
We also support a Gradio web ui with diffusers to run inside a colab notebook:
# !pip install diffusers==0.3.0 from diffusers import StableDiffusionPipeline # using the 60,000 steps checkpoint pipe = StableDiffusionPipeline.from_pretrained("naclbit/trinart_stable_diffusion_v2", revision="diffusers-60k") pipe.to("cuda") image = pipe("A magical dragon flying in front of the Himalaya in manga style").images[0] image
If you want to run the pipeline faster or on a different hardware, please have a look at the optimization docs .
# !pip install diffusers==0.3.0 from diffusers import StableDiffusionImg2ImgPipeline import requests from PIL import Image from io import BytesIO url = "https://scitechdaily.com/images/Dog-Park.jpg" response = requests.get(url) init_image = Image.open(BytesIO(response.content)).convert("RGB") init_image = init_image.resize((768, 512)) # using the 115,000 steps checkpoint pipe = StableDiffusionImg2ImgPipeline.from_pretrained("naclbit/trinart_stable_diffusion_v2", revision="diffusers-115k") pipe.to("cuda") images = pipe(prompt="Manga drawing of Brad Pitt", init_image=init_image, strength=0.75, guidance_scale=7.5).images image
If you want to run the pipeline faster or on a different hardware, please have a look at the optimization docs .
trinart_stable_diffusion is a SD model finetuned by about 40,000 assorted high resolution manga/anime-style pictures for 8 epochs. This is the same model running on Twitter bot @trinsama ( https://twitter.com/trinsama )
Twitterボット「とりんさまAI」@trinsama ( https://twitter.com/trinsama ) で使用しているSDのファインチューン済モデルです。一定のルールで選別された約4万枚のアニメ・マンガスタイルの高解像度画像を用いて約8エポックの訓練を行いました。
V2 checkpoint uses dropouts, 10,000 more images and a new tagging strategy and trained longer to improve results while retaining the original aesthetics.
バージョン2は画像を1万枚追加したほか、ドロップアウトの適用、タグ付けの改善とより長いトレーニング時間により、SDのスタイルを保ったまま出力内容の改善を目指しています。
Step 115000/95000 checkpoints were trained further, but you may use step 60000 checkpoint instead if style nudging is too much.
ステップ115000/95000のチェックポイントでスタイルが変わりすぎると感じる場合は、ステップ60000のチェックポイントを使用してみてください。
img2imgIf you want to run latent-diffusion 's stock ddim img2img script with this model, use_ema must be set to False.
latent-diffusion のscriptsフォルダに入っているddim img2imgをこのモデルで動かす場合、use_emaはFalseにする必要があります。
HardwareEach images were diffused using K. Crowson's k-lms (from k-diffusion repo) method for 50 steps.
CreditsCreativeML OpenRAIL-M