模型:
mrm8488/falcoder-7b
Falcon-7b fine-tuned on the CodeAlpaca 20k instructions dataset by using the method QLoRA with PEFT library.
CodeAlpaca_20K : contains 20K instruction-following data used for fine-tuning the Code Alpaca model.
TBA
Step | Training Loss | Validation Loss |
---|---|---|
100 | 0.798500 | 0.767996 |
200 | 0.725900 | 0.749880 |
300 | 0.669100 | 0.748029 |
400 | 0.687300 | 0.742342 |
500 | 0.579900 | 0.736735 |
import torch from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer model_id = "mrm8488/falcoder-7b" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda") def generate( instruction, max_new_tokens=128, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, **kwargs ): prompt = instruction + "\n### Solution:\n" print(prompt) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to("cuda") attention_mask = inputs["attention_mask"].to("cuda") generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, attention_mask=attention_mask, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, early_stopping=True ) s = generation_output.sequences[0] output = tokenizer.decode(s) return output.split("### Solution:")[1].lstrip("\n") instruction = "Design a class for representing a person in Python." print(generate(instruction))
@misc {manuel_romero_2023, author = { {Manuel Romero} }, title = { falcoder-7b (Revision e061237) }, year = 2023, url = { https://huggingface.co/mrm8488/falcoder-7b }, doi = { 10.57967/hf/0789 }, publisher = { Hugging Face } }