模型:

mrm8488/bert2bert_shared-turkish-summarization

中文

Turkish BERT2BERT (shared) fine-tuned on MLSUM TR for summarization

Model

dbmdz/bert-base-turkish-cased (BERT Checkpoint)

Dataset

MLSUM is the first large-scale MultiLingual SUMmarization dataset. Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish . Together with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. We report cross-lingual comparative analyses based on state-of-the-art systems. These highlight existing biases which motivate the use of a multi-lingual dataset.

MLSUM tu/tr

Results

Set Metric Value
Test Rouge2 - mid -precision 32.41
Test Rouge2 - mid - recall 28.65
Test Rouge2 - mid - fmeasure 29.48

Usage

import torch
from transformers import BertTokenizerFast, EncoderDecoderModel
device = 'cuda' if torch.cuda.is_available() else 'cpu'
ckpt = 'mrm8488/bert2bert_shared-turkish-summarization'
tokenizer = BertTokenizerFast.from_pretrained(ckpt)
model = EncoderDecoderModel.from_pretrained(ckpt).to(device)

def generate_summary(text):

   inputs = tokenizer([text], padding="max_length", truncation=True, max_length=512, return_tensors="pt")
   input_ids = inputs.input_ids.to(device)
   attention_mask = inputs.attention_mask.to(device)
   output = model.generate(input_ids, attention_mask=attention_mask)
   return tokenizer.decode(output[0], skip_special_tokens=True)
   
text = "Your text here..."
generate_summary(text)

Created by Manuel Romero/@mrm8488 with the support of Narrativa

Made with ♥ in Spain