模型:
mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization
This model is a warm-started BERT2BERT ( small ) model fine-tuned on the CNN/Dailymail summarization dataset.
The model achieves a 17.37 ROUGE-2 score on CNN/Dailymail 's test dataset.
For more details on how the model was fine-tuned, please refer to this notebook.
Metric | # Value |
---|---|
ROUGE-2 | 17.37 |
from transformers import BertTokenizerFast, EncoderDecoderModel import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenizer = BertTokenizerFast.from_pretrained('mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization') model = EncoderDecoderModel.from_pretrained('mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization').to(device) def generate_summary(text): # cut off at BERT max length 512 inputs = tokenizer([text], padding="max_length", truncation=True, max_length=512, return_tensors="pt") input_ids = inputs.input_ids.to(device) attention_mask = inputs.attention_mask.to(device) output = model.generate(input_ids, attention_mask=attention_mask) return tokenizer.decode(output[0], skip_special_tokens=True) text = "your text to be summarized here..." generate_summary(text)
Created by Manuel Romero/@mrm8488 | LinkedIn
Made with ♥ in Spain