模型:
microsoft/Multilingual-MiniLM-L12-H384
MiniLM is a distilled model from the paper " MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers ".
Please find the information about preprocessing, training and full details of the MiniLM in the original MiniLM repository .
Please note: This checkpoint uses BertModel with XLMRobertaTokenizer so AutoTokenizer won't work with this checkpoint!
Multilingual MiniLM uses the same tokenizer as XLM-R. But the Transformer architecture of our model is the same as BERT. We provide the fine-tuning code on XNLI based on huggingface/transformers . Please replace run_xnli.py in transformers with ours to fine-tune multilingual MiniLM.
We evaluate the multilingual MiniLM on cross-lingual natural language inference benchmark (XNLI) and cross-lingual question answering benchmark (MLQA).
Cross-Lingual Natural Language Inference - XNLIWe evaluate our model on cross-lingual transfer from English to other languages. Following Conneau et al. (2019) , we select the best single model on the joint dev set of all the languages.
Model | #Layers | #Hidden | #Transformer Parameters | Average | en | fr | es | de | el | bg | ru | tr | ar | vi | th | zh | hi | sw | ur |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mBERT | 12 | 768 | 85M | 66.3 | 82.1 | 73.8 | 74.3 | 71.1 | 66.4 | 68.9 | 69.0 | 61.6 | 64.9 | 69.5 | 55.8 | 69.3 | 60.0 | 50.4 | 58.0 |
XLM-100 | 16 | 1280 | 315M | 70.7 | 83.2 | 76.7 | 77.7 | 74.0 | 72.7 | 74.1 | 72.7 | 68.7 | 68.6 | 72.9 | 68.9 | 72.5 | 65.6 | 58.2 | 62.4 |
XLM-R Base | 12 | 768 | 85M | 74.5 | 84.6 | 78.4 | 78.9 | 76.8 | 75.9 | 77.3 | 75.4 | 73.2 | 71.5 | 75.4 | 72.5 | 74.9 | 71.1 | 65.2 | 66.5 |
mMiniLM-L12xH384 | 12 | 384 | 21M | 71.1 | 81.5 | 74.8 | 75.7 | 72.9 | 73.0 | 74.5 | 71.3 | 69.7 | 68.8 | 72.1 | 67.8 | 70.0 | 66.2 | 63.3 | 64.2 |
This example code fine-tunes 12 -layer multilingual MiniLM on XNLI.
# run fine-tuning on XNLI DATA_DIR=/{path_of_data}/ OUTPUT_DIR=/{path_of_fine-tuned_model}/ MODEL_PATH=/{path_of_pre-trained_model}/ python ./examples/run_xnli.py --model_type minilm \ --output_dir ${OUTPUT_DIR} --data_dir ${DATA_DIR} \ --model_name_or_path microsoft/Multilingual-MiniLM-L12-H384 \ --tokenizer_name xlm-roberta-base \ --config_name ${MODEL_PATH}/multilingual-minilm-l12-h384-config.json \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_gpu_train_batch_size 128 \ --learning_rate 5e-5 \ --num_train_epochs 5 \ --per_gpu_eval_batch_size 32 \ --weight_decay 0.001 \ --warmup_steps 500 \ --save_steps 1500 \ --logging_steps 1500 \ --eval_all_checkpoints \ --language en \ --fp16 \ --fp16_opt_level O2Cross-Lingual Question Answering - MLQA
Following Lewis et al. (2019b) , we adopt SQuAD 1.1 as training data and use MLQA English development data for early stopping.
Model F1 Score | #Layers | #Hidden | #Transformer Parameters | Average | en | es | de | ar | hi | vi | zh |
---|---|---|---|---|---|---|---|---|---|---|---|
mBERT | 12 | 768 | 85M | 57.7 | 77.7 | 64.3 | 57.9 | 45.7 | 43.8 | 57.1 | 57.5 |
XLM-15 | 12 | 1024 | 151M | 61.6 | 74.9 | 68.0 | 62.2 | 54.8 | 48.8 | 61.4 | 61.1 |
XLM-R Base (Reported) | 12 | 768 | 85M | 62.9 | 77.8 | 67.2 | 60.8 | 53.0 | 57.9 | 63.1 | 60.2 |
XLM-R Base (Our fine-tuned) | 12 | 768 | 85M | 64.9 | 80.3 | 67.0 | 62.7 | 55.0 | 60.4 | 66.5 | 62.3 |
mMiniLM-L12xH384 | 12 | 384 | 21M | 63.2 | 79.4 | 66.1 | 61.2 | 54.9 | 58.5 | 63.1 | 59.0 |
If you find MiniLM useful in your research, please cite the following paper:
@misc{wang2020minilm, title={MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers}, author={Wenhui Wang and Furu Wei and Li Dong and Hangbo Bao and Nan Yang and Ming Zhou}, year={2020}, eprint={2002.10957}, archivePrefix={arXiv}, primaryClass={cs.CL} }