模型:
jonatasgrosman/wav2vec2-large-xlsr-53-russian
使用 Common Voice 6.1 和 CSS10 的训练和验证数据集在俄语上进行了 facebook/wav2vec2-large-xlsr-53 。在使用此模型时,请确保您的语音输入采样率为16kHz。
感谢 OVHcloud 慷慨赠予的GPU信用对此模型进行了微调 :)
训练所使用的脚本可以在此处找到: https://github.com/jonatasgrosman/wav2vec2-sprint
可以直接使用模型(无需语言模型)如下所示...
使用 HuggingSound 库:
from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-russian") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths)
编写自己的推理脚本:
import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "ru" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-russian" SAMPLES = 5 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence)
Reference | Prediction |
---|---|
ОН РАБОТАТЬ, А ЕЕ НЕ УДЕРЖАТЬ НИКАК — БЕГАЕТ ЗА КЛЁШЕМ КАЖДОГО БУЛЬВАРНИКА. | ОН РАБОТАТЬ А ЕЕ НЕ УДЕРЖАТ НИКАК БЕГАЕТ ЗА КЛЕШОМ КАЖДОГО БУЛЬБАРНИКА |
ЕСЛИ НЕ БУДЕТ ВОЗРАЖЕНИЙ, Я БУДУ СЧИТАТЬ, ЧТО АССАМБЛЕЯ СОГЛАСНА С ЭТИМ ПРЕДЛОЖЕНИЕМ. | ЕСЛИ НЕ БУДЕТ ВОЗРАЖЕНИЙ Я БУДУ СЧИТАТЬ ЧТО АССАМБЛЕЯ СОГЛАСНА С ЭТИМ ПРЕДЛОЖЕНИЕМ |
ПАЛЕСТИНЦАМ НЕОБХОДИМО СНАЧАЛА УСТАНОВИТЬ МИР С ИЗРАИЛЕМ, А ЗАТЕМ ДОБИВАТЬСЯ ПРИЗНАНИЯ ГОСУДАРСТВЕННОСТИ. | ПАЛЕСТИНЦАМ НЕОБХОДИМО СНАЧАЛА УСТАНОВИТЬ С НИ МИР ФЕЗРЕЛЕМ А ЗАТЕМ ДОБИВАТЬСЯ ПРИЗНАНИЯ ГОСУДАРСТВЕНСКИ |
У МЕНЯ БЫЛО ТАКОЕ ЧУВСТВО, ЧТО ЧТО-ТО ТАКОЕ ОЧЕНЬ ВАЖНОЕ Я ПРИБАВЛЯЮ. | У МЕНЯ БЫЛО ТАКОЕ ЧУВСТВО ЧТО ЧТО-ТО ТАКОЕ ОЧЕНЬ ВАЖНОЕ Я ПРЕДБАВЛЯЕТ |
ТОЛЬКО ВРЯД ЛИ ПОЙМЕТ. | ТОЛЬКО ВРЯД ЛИ ПОЙМЕТ |
ВРОНСКИЙ, СЛУШАЯ ОДНИМ УХОМ, ПЕРЕВОДИЛ БИНОКЛЬ С БЕНУАРА НА БЕЛЬ-ЭТАЖ И ОГЛЯДЫВАЛ ЛОЖИ. | ЗЛАЗКИ СЛУШАЮ ОТ ОДНИМ УХАМ ТЫ ВОТИ В ВИНОКОТ СПИЛА НА ПЕРЕТАЧ И ОКЛЯДЫВАЛ БОСУ |
К СОЖАЛЕНИЮ, СИТУАЦИЯ ПРОДОЛЖАЕТ УХУДШАТЬСЯ. | К СОЖАЛЕНИЮ СИТУАЦИИ ПРОДОЛЖАЕТ УХУЖАТЬСЯ |
ВСЁ ЖАЛОВАНИЕ УХОДИЛО НА ДОМАШНИЕ РАСХОДЫ И НА УПЛАТУ МЕЛКИХ НЕПЕРЕВОДИВШИХСЯ ДОЛГОВ. | ВСЕ ЖАЛОВАНИЕ УХОДИЛО НА ДОМАШНИЕ РАСХОДЫ И НА УПЛАТУ МЕЛКИХ НЕ ПЕРЕВОДИВШИХСЯ ДОЛГОВ |
ТЕПЕРЬ ДЕЛО, КОНЕЧНО, ЗА ТЕМ, ЧТОБЫ ПРЕВРАТИТЬ СЛОВА В ДЕЛА. | ТЕПЕРЬ ДЕЛАЮ КОНЕЧНО ЗАТЕМ ЧТОБЫ ПРЕВРАТИТЬ СЛОВА В ДЕЛА |
ДЕВЯТЬ | ЛЕВЕТЬ |
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-russian --dataset mozilla-foundation/common_voice_6_0 --config ru --split test
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-russian --dataset speech-recognition-community-v2/dev_data --config ru --split validation --chunk_length_s 5.0 --stride_length_s 1.0
如果您想引用此模型,可以使用以下内容:
@misc{grosman2021xlsr53-large-russian, title={Fine-tuned {XLSR}-53 large model for speech recognition in {R}ussian}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-russian}}, year={2021} }