模型:
jonatasgrosman/wav2vec2-large-xlsr-53-greek
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Greek using the train and validation splits of Common Voice 6.1 and CSS10 . When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned thanks to the GPU credits generously given by the OVHcloud :)
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
The model can be used directly (without a language model) as follows...
Using the HuggingSound library:
from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-greek") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths)
Writing your own inference script:
import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "el" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-greek" SAMPLES = 5 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence)
Reference | Prediction |
---|---|
ΤΟ ΒΑΣΙΛΌΠΟΥΛΟ, ΠΟΥ ΜΟΙΆΖΕΙ ΛΕΟΝΤΑΡΆΚΙ ΚΑΙ ΑΕΤΟΥΔΆΚΙ | ΤΟ ΒΑΣΙΛΌΠΟΥΛΟ ΠΟΥ ΜΙΑΣΕ ΛΙΟΝΤΑΡΑΚΉ ΚΑΙ ΑΪΤΟΥΔΆΚΙ |
ΣΥΝΆΜΑ ΞΕΠΡΌΒΑΛΑΝ ΑΠΌ ΜΈΣΑ ΑΠΌ ΤΑ ΔΈΝΤΡΑ, ΔΕΞΙΆ, ΑΡΜΑΤΩΜΈΝΟΙ ΚΑΒΑΛΑΡΈΟΙ. | ΣΥΝΆΜΑ ΚΑΙ ΤΡΌΒΑΛΑΝ ΑΠΌ ΜΈΣΑ ΑΠΌ ΤΑ ΔΈΝΤΡΑ ΔΕΞΙΆ ΑΡΜΑΤΩΜΈΝΟΙ ΚΑΒΑΛΑΡΈΟΙ |
ΤΑ ΣΥΣΚΕΥΑΣΜΈΝΑ ΒΙΟΛΟΓΙΚΆ ΛΑΧΑΝΙΚΆ ΔΕΝ ΠΕΡΙΈΧΟΥΝ ΣΥΝΤΗΡΗΤΙΚΆ ΚΑΙ ΟΡΜΌΝΕΣ | ΤΑ ΣΥΣΚΕΦΑΣΜΈΝΑ ΒΙΟΛΟΓΙΚΆ ΛΑΧΑΝΙΚΆ ΔΕΝ ΠΕΡΙΈΧΟΥΝ ΣΙΔΗΡΗΤΙΚΆ ΚΑΙ ΟΡΜΌΝΕΣ |
ΑΚΟΛΟΥΘΉΣΕΤΕ ΜΕ! | ΑΚΟΛΟΥΘΉΣΤΕ ΜΕ |
ΚΑΙ ΠΟΎ ΜΠΟΡΏ ΝΑ ΤΟΝ ΒΡΩ; | Ε ΠΟΎ ΜΠΟΡΏ ΝΑ ΤΙ ΕΒΡΩ |
ΝΑΙ! ΑΠΟΚΡΊΘΗΚΕ ΤΟ ΠΑΙΔΊ | ΝΑΙ ΑΠΟΚΡΊΘΗΚΕ ΤΟ ΠΑΙΔΊ |
ΤΟ ΠΑΛΆΤΙ ΜΟΥ ΤΟ ΠΡΟΜΉΘΕΥΕ. | ΤΟ ΠΑΛΆΤΙ ΜΟΥ ΤΟ ΠΡΟΜΉΘΕΥΕ |
ΉΛΘΕ ΜΉΝΥΜΑ ΑΠΌ ΤΟ ΘΕΊΟ ΒΑΣΙΛΙΆ; | ΉΛΘΑ ΜΕΊΝΕΙ ΜΕ ΑΠΌ ΤΟ ΘΕΊΟ ΒΑΣΊΛΙΑ |
ΠΑΡΑΚΆΤΩ, ΈΝΑ ΡΥΆΚΙ ΜΟΥΡΜΟΎΡΙΖΕ ΓΛΥΚΆ, ΚΥΛΏΝΤΑΣ ΤΑ ΚΡΥΣΤΑΛΛΈΝΙΑ ΝΕΡΆ ΤΟΥ ΑΝΆΜΕΣΑ ΣΤΑ ΠΥΚΝΆ ΧΑΜΌΔΕΝΤΡΑ. | ΠΑΡΑΚΆΤΩ ΈΝΑ ΡΥΆΚΙ ΜΟΥΡΜΟΎΡΙΖΕ ΓΛΥΚΆ ΚΥΛΏΝΤΑΣ ΤΑ ΚΡΥΣΤΑΛΛΈΝΙΑ ΝΕΡΆ ΤΟΥ ΑΝΆΜΕΣΑ ΣΤΑ ΠΥΚΡΆ ΧΑΜΌΔΕΝΤΡΑ |
ΠΡΆΓΜΑΤΙ, ΕΊΝΑΙ ΑΣΤΕΊΟ ΝΑ ΠΆΡΕΙ Ο ΔΙΆΒΟΛΟΣ | ΠΡΆΓΜΑΤΗ ΕΊΝΑΙ ΑΣΤΕΊΟ ΝΑ ΠΆΡΕΙ Ο ΔΙΆΒΟΛΟΣ |
The model can be evaluated as follows on the Greek test data of Common Voice.
import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "el" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-greek" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\\\", "º", "−", "^", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
Test Result :
In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-04-22). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.
Model | WER | CER |
---|---|---|
lighteternal/wav2vec2-large-xlsr-53-greek | 10.13% | 2.66% |
jonatasgrosman/wav2vec2-large-xlsr-53-greek | 11.62% | 3.36% |
vasilis/wav2vec2-large-xlsr-53-greek | 19.09% | 5.88% |
PereLluis13/wav2vec2-large-xlsr-53-greek | 20.16% | 5.71% |
If you want to cite this model you can use this:
@misc{grosman2021xlsr53-large-greek, title={Fine-tuned {XLSR}-53 large model for speech recognition in {G}reek}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-greek}}, year={2021} }