mim-asr-interviews-full-small-no-augmented
This model is a fine-tuned version of
openai/whisper-small
on the None dataset.It achieves the following results on the evaluation set:
- Loss: 0.8421
- Wer: 75.7006
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 10000
- mixed_precision_training: Native AMP
Training results
|
Training Loss
|
Epoch
|
Step
|
Validation Loss
|
Wer
|
|
0.0003
|
52.63
|
1000
|
0.6102
|
55.2783
|
|
0.0001
|
105.26
|
2000
|
0.6581
|
76.8522
|
|
0.0
|
157.89
|
3000
|
0.6936
|
62.1113
|
|
0.0
|
210.53
|
4000
|
0.7215
|
64.2994
|
|
0.0
|
263.16
|
5000
|
0.7532
|
65.4127
|
|
0.0
|
315.79
|
6000
|
0.7775
|
65.1440
|
|
0.0
|
368.42
|
7000
|
0.8028
|
65.0288
|
|
0.0
|
421.05
|
8000
|
0.8207
|
69.8656
|
|
0.0
|
473.68
|
9000
|
0.8364
|
70.2495
|
|
0.0
|
526.32
|
10000
|
0.8421
|
75.7006
|
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3
以上模型是在None数据集上,根据
openai/whisper-small
进行微调的版本。它在评估集上实现了以下结果:
- 损失(Loss):0.8421
- 词错误率(WER):75.7006
模型描述:
需要更多信息
拟合用途和限制:
需要更多信息
训练和评估数据:
需要更多信息
训练过程:
训练超参数:
以下是训练过程中使用的超参数:
- 学习率(learning_rate): 1e-05
- 训练批次大小(train_batch_size): 32
- 评估批次大小(eval_batch_size): 16
- 随机种子(seed): 42
- 梯度累积步数(gradient_accumulation_steps): 2
- 总训练批次大小(total_train_batch_size): 64
- 优化器(optimizer): Adam,参数为betas=(0.9, 0.999)和epsilon=1e-08
- 学习率调度器类型(lr_scheduler_type): 线性(linear)
- 学习率调度器预热步数(lr_scheduler_warmup_steps): 1000
- 训练步数(training_steps): 10000
- 混合精度训练(mixed_precision_training): Native AMP
训练结果:
|
Training Loss
|
Epoch
|
Step
|
Validation Loss
|
Wer
|
|
0.0003
|
52.63
|
1000
|
0.6102
|
55.2783
|
|
0.0001
|
105.26
|
2000
|
0.6581
|
76.8522
|
|
0.0
|
157.89
|
3000
|
0.6936
|
62.1113
|
|
0.0
|
210.53
|
4000
|
0.7215
|
64.2994
|
|
0.0
|
263.16
|
5000
|
0.7532
|
65.4127
|
|
0.0
|
315.79
|
6000
|
0.7775
|
65.1440
|
|
0.0
|
368.42
|
7000
|
0.8028
|
65.0288
|
|
0.0
|
421.05
|
8000
|
0.8207
|
69.8656
|
|
0.0
|
473.68
|
9000
|
0.8364
|
70.2495
|
|
0.0
|
526.32
|
10000
|
0.8421
|
75.7006
|
框架版本:
以下是所用框架的版本:
- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3