This RoBERTa-based model can classify the sentiment of English language text in 3 classes:
The model was fine-tuned on 5,304 manually annotated social media posts. The hold-out accuracy is 86.1%. For details on the training approach see Web Appendix F in Hartmann et al. (2021).
from transformers import pipeline classifier = pipeline("text-classification", model="j-hartmann/sentiment-roberta-large-english-3-classes", return_all_scores=True) classifier("This is so nice!")
Output: [[{'label': 'negative', 'score': 0.00016451838018838316}, {'label': 'neutral', 'score': 0.000174045650055632}, {'label': 'positive', 'score': 0.9996614456176758}]]
Please cite this paper when you use our model. Feel free to reach out to jochen.hartmann@tum.de with any questions or feedback you may have.
@article{hartmann2021, title={The Power of Brand Selfies}, author={Hartmann, Jochen and Heitmann, Mark and Schamp, Christina and Netzer, Oded}, journal={Journal of Marketing Research} year={2021} }