模型:
ikala/redpajama-3b-chat
任务:
文本生成数据集:
OpenAssistant/oasst1 databricks/databricks-dolly-15k anon8231489123/ShareGPT_Vicuna_unfiltered LIUM/tedlium theblackcat102/joke_explaination 3Atheblackcat102/joke_explaination 3ALIUM/tedlium 3Aanon8231489123/ShareGPT_Vicuna_unfiltered 3Adatabricks/databricks-dolly-15k 3AOpenAssistant/oasst1许可:
cc-by-nc-2.0It is based on a RedPajama's 3B that was fine-tuned on human demonstrations of assistant conversations collected through the https://open-assistant.io/ human feedback web app before April 12, 2023.
supervised finetune on sequence length of 5120
Two special tokens are used to mark the beginning of user and assistant turns: <|prompter|> and <|assistant|> . Each turn ends with a <|endoftext|> token.
Input prompt example:
<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>
The input ends with the <|assistant|> token to signal that the model should start generating the assistant reply.
model | MMLU | BBH | Humaneval @10 |
---|---|---|---|
ikala/redpajama-3b-chat | 24.6 | 29.3 | 4.8 |
ikala/bloom-zh-3b-chat | 31.4 | 30.2 | 0.0 |
llama-7b (reference) | 30.9 | 27.6 | 10.3 |
command: deepspeed trainer_sft.py --configs defaults redpajama-3b datasets --num_train_epochs 2 --deepspeed
data:
datasets: - wmt2019_zh-en: max_val_set: 1000 max_train_set: 20000 - ted_trans_en-ja: max_val_set: 1000 max_train_set: 20000 - ted_trans_zh-ja: max_val_set: 1000 max_train_set: 20000 - ikala: input_file_path: export_conversation_v4.4.jsonl val_split: 0.05 - dolly15k: val_split: 0.05 - oasst_export: lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk,zh,ja,th,ko" input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz val_split: 0.05 - joke - gsm8k - webgpt
with internal datasets ikala so if you try to reproduce please remove the dataset
redpajama-3b:
redpajama-3b: dtype: fp16 log_dir: "redpajama_3b" learning_rate: 1e-5 model_name: saved_models/RedPajama-INCITE-Base-3B-v1 output_dir: ikala_v4_3b weight_decay: 0.0 max_length: 8196 warmup_steps: 2000 gradient_checkpointing: true gradient_accumulation_steps: 32 per_device_train_batch_size: 1 per_device_eval_batch_size: 2 eval_steps: 500 save_steps: 1000 num_train_epochs: 8 save_total_limit: 2 deepspeed_config: configs/zero3_config_sft.json
zero config:
{ "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "bf16": { "enabled": "auto" }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } }, "scheduler": { "type": "WarmupDecayLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto", "warmup_type": "linear", "total_num_steps": "auto" } }, "zero_optimization": { "stage": 3, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e9, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": true }, "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false }