模型:
harshit345/xlsr-wav2vec-speech-emotion-recognition
# requirement packages !pip install git+https://github.com/huggingface/datasets.git !pip install git+https://github.com/huggingface/transformers.git !pip install torchaudio !pip install librosa
import torch import torch.nn as nn import torch.nn.functional as F import torchaudio from transformers import AutoConfig, Wav2Vec2FeatureExtractor import librosa import IPython.display as ipd import numpy as np import pandas as pd
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition" config = AutoConfig.from_pretrained(model_name_or_path) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) sampling_rate = feature_extractor.sampling_rate model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate): speech_array, _sampling_rate = torchaudio.load(path) resampler = torchaudio.transforms.Resample(_sampling_rate) speech = resampler(speech_array).squeeze().numpy() return speech def predict(path, sampling_rate): speech = speech_file_to_array_fn(path, sampling_rate) inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: inputs[key].to(device) for key in inputs} with torch.no_grad(): logits = model(**inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] return outputs
# path for a sample path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav' outputs = predict(path, sampling_rate)
[{'Emotion': 'anger', 'Score': '78.3%'}, {'Emotion': 'disgust', 'Score': '11.7%'}, {'Emotion': 'fear', 'Score': '5.4%'}, {'Emotion': 'happiness', 'Score': '4.1%'}, {'Emotion': 'sadness', 'Score': '0.5%'}]
以下表格总结了模型的整体得分以及每个类别的得分。
Emotions | precision | recall | f1-score | accuracy |
---|---|---|---|---|
anger | 0.82 | 1.00 | 0.81 | |
disgust | 0.85 | 0.96 | 0.85 | |
fear | 0.78 | 0.88 | 0.80 | |
happiness | 0.84 | 0.71 | 0.78 | |
sadness | 0.86 | 1.00 | 0.79 | |
Overall | 0.806 |
Colab笔记 https://colab.research.google.com/drive/1aPPb_ZVS5dlFVZySly8Q80a44La1XjJu?usp=sharing