模型:

gogamza/kobart-base-v2

中文

Model Card for kobart-base-v2

Model Details

Model Description

BART ( B idirectional and A uto- R egressive T ransformers)는 입력 텍스트 일부에 노이즈를 추가하여 이를 다시 원문으로 복구하는 autoencoder 의 형태로 학습이 됩니다. 한국어 BART(이하 KoBART ) 는 논문에서 사용된 Text Infilling 노이즈 함수를 사용하여 40GB 이상의 한국어 텍스트에 대해서 학습한 한국어 encoder-decoder 언어 모델입니다. 이를 통해 도출된 KoBART-base 를 배포합니다.

  • Developed by: More information needed
  • Shared by [Optional]: Heewon(Haven) Jeon
  • Model type: Feature Extraction
  • Language(s) (NLP): Korean
  • License: MIT
  • Parent Model: BART
  • Resources for more information:

Uses

Direct Use

This model can be used for the task of Feature Extraction.

Downstream Use [Optional]

More information needed.

Out-of-Scope Use

The model should not be used to intentionally create hostile or alienating environments for people.

Bias, Risks, and Limitations

Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021) ). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

Training Details

Training Data

Data # of Sentences
Korean Wiki 5M
Other corpus 0.27B

한국어 위키 백과 이외, 뉴스, 책, 모두의 말뭉치 v1.0(대화, 뉴스, ...) , 청와대 국민청원 등의 다양한 데이터가 모델 학습에 사용되었습니다.

vocab 사이즈는 30,000 이며 대화에 자주 쓰이는 아래와 같은 이모티콘, 이모지 등을 추가하여 해당 토큰의 인식 능력을 올렸습니다.

?, ?, ?, ?, ?, .. , :-) , :) , -) , (-: ...

Training Procedure

Tokenizer

tokenizers 패키지의 Character BPE tokenizer 로 학습되었습니다.

Speeds, Sizes, Times

Model # of params Type # of layers # of heads ffn_dim hidden_dims
KoBART-base 124M Encoder 6 16 3072 768
Decoder 6 16 3072 768

Evaluation

Testing Data, Factors & Metrics

Testing Data

More information needed

Factors

More information needed

Metrics

More information needed

Results

NSMC

  • acc. : 0.901

The model authors also note in the GitHub Repo :

NSMC (acc) KorSTS (spearman) Question Pair (acc)
KoBART-base 90.24 81.66 94.34

Model Examination

More information needed

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019) .

  • Hardware Type: More information needed
  • Hours used: More information needed
  • Cloud Provider: More information needed
  • Compute Region: More information needed
  • Carbon Emitted: More information needed

Technical Specifications [optional]

Model Architecture and Objective

More information needed

Compute Infrastructure

More information needed

Hardware

More information needed

Software

More information needed.

Citation

BibTeX:

More information needed.

Glossary [optional]

More information needed

More Information [optional]

More information needed

Model Card Authors [optional]

Heewon(Haven) Jeon in collaboration with Ezi Ozoani and the Hugging Face team

Model Card Contact

The model authors note in the GitHub Repo : KoBART 관련 이슈는 이곳 에 올려주세요.

How to Get Started with the Model

Use the code below to get started with the model.

Click to expand
 from transformers import PreTrainedTokenizerFast, BartModel

tokenizer = PreTrainedTokenizerFast.from_pretrained('gogamza/kobart-base-v2')
model = BartModel.from_pretrained('gogamza/kobart-base-v2')