模型:
flax-community/dansk-gpt-wiki
A Danish GPT2 style model trained using Flax CLM pipeline on the Danish part of the wiki40b dataset.
https://huggingface.co/datasets/wiki40b
This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge.
https://huggingface.co/birgermoell/swedish-gpt/
https://huggingface.co/flax-community/swe-gpt-wiki
https://huggingface.co/flax-community/nordic-gpt-wiki
https://huggingface.co/flax-community/dansk-gpt-wiki
https://huggingface.co/flax-community/norsk-gpt-wiki
https://huggingface.co/flax-community/nordic-roberta-wiki
https://huggingface.co/flax-community/swe-roberta-wiki-oscar
https://huggingface.co/birgermoell/roberta-swedish-scandi
https://huggingface.co/birgermoell/roberta-swedish
https://huggingface.co/birgermoell/t5-base-swedish
The data was cleaned and preprocessed using the following script. Make sure to install depencies for beam_runner to make the dataset work.
from datasets import load_dataset def load_and_clean_wiki(): dataset = load_dataset('wiki40b', 'da', beam_runner='DirectRunner', split="train") #dataset = load_dataset('wiki40b', 'sv', beam_runner='DirectRunner') dataset = dataset.remove_columns(['wikidata_id', 'version_id']) filtered_dataset = dataset.map(filter_wikipedia) # filtered_dataset[:3] # print(filtered_dataset[:3]) return filtered_dataset def filter_wikipedia(batch): batch["text"] = " ".join(batch["text"].split("\ _START_SECTION_\ ")) batch["text"] = " ".join(batch["text"].split("\ _START_ARTICLE_\ ")) batch["text"] = " ".join(batch["text"].split("\ _START_ARTICLE_\ ")) batch["text"] = " ".join(batch["text"].split("\ _START_PARAGRAPH_\ ")) batch["text"] = " ".join(batch["text"].split("_NEWLINE_")) batch["text"] = " ".join(batch["text"].split("\xa0")) return batch
The following training script was used to train the model.
./run_clm_flax.py --output_dir="${MODEL_DIR}" --model_type="gpt2" --config_name="${MODEL_DIR}" --tokenizer_name="${MODEL_DIR}" --dataset_name="wiki40b" --dataset_config_name="da" --do_train --do_eval --block_size="512" --per_device_train_batch_size="64" --per_device_eval_batch_size="64" --learning_rate="5e-3" --warmup_steps="1000" --adam_beta1="0.9" --adam_beta2="0.98" --weight_decay="0.01" --overwrite_output_dir --num_train_epochs="20" --logging_steps="500" --save_steps="1000" --eval_steps="2500" --push_to_hub