模型:
flair/ner-multi
This is the standard 4-class NER model for 4 CoNLL-03 languages that ships with Flair . Also kind of works for related languages like French.
F1-Score: 92,16 (CoNLL-03 English), 87,33 (CoNLL-03 German revised), 88,96 (CoNLL-03 Dutch), 86,65 (CoNLL-03 Spanish)
Predicts 4 tags:
tag | meaning |
---|---|
PER | person name |
LOC | location name |
ORG | organization name |
MISC | other name |
Based on Flair embeddings and LSTM-CRF.
Requires: Flair ( pip install flair )
from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-multi") # make example sentence in any of the four languages sentence = Sentence("George Washington ging nach Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity)
This yields the following output:
Span [1,2]: "George Washington" [− Labels: PER (0.9977)] Span [5]: "Washington" [− Labels: LOC (0.9895)]
So, the entities " George Washington " (labeled as a person ) and " Washington " (labeled as a location ) are found in the sentence " George Washington ging nach Washington ".
The following Flair script was used to train this model:
from flair.data import Corpus from flair.datasets import CONLL_03, CONLL_03_GERMAN, CONLL_03_DUTCH, CONLL_03_SPANISH from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the multi-language corpus corpus: Corpus = MultiCorpus([ CONLL_03(), # English corpus CONLL_03_GERMAN(), # German corpus CONLL_03_DUTCH(), # Dutch corpus CONLL_03_SPANISH(), # Spanish corpus ]) # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # GloVe embeddings WordEmbeddings('glove'), # FastText embeddings WordEmbeddings('de'), # contextual string embeddings, forward FlairEmbeddings('multi-forward'), # contextual string embeddings, backward FlairEmbeddings('multi-backward'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/ner-multi', train_with_dev=True, max_epochs=150)
Please cite the following paper when using this model.
@misc{akbik2019multilingual, title={Multilingual sequence labeling with one model}, author={Akbik, Alan and Bergmann, Tanja and Vollgraf, Roland} booktitle = {{NLDL} 2019, Northern Lights Deep Learning Workshop}, year = {2019} }
@inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} }