模型:
flair/ner-german-large
这是Flair中用于德语的大型4类别命名实体识别模型。
F1-Score: 92,31 (CoNLL-03德语修订版)
预测4种标签:
tag | meaning |
---|---|
PER | person name |
LOC | location name |
ORG | organization name |
MISC | other name |
基于文档级别的XLM-R嵌入和 FLERT 进行预测。
需要: Flair ( pip install flair )
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("flair/ner-german-large")
# make example sentence
sentence = Sentence("George Washington ging nach Washington")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('ner'):
print(entity)
这将产生以下输出:
Span [1,2]: "George Washington" [− Labels: PER (1.0)]
Span [5]: "Washington" [− Labels: LOC (1.0)]
因此,在句子“ George Washington ging nach Washington ”中发现了实体“ George Washington ”(标记为人)和“ Washington ”(标记为位置)。
使用以下Flair脚本训练了此模型:
import torch
# 1. get the corpus
from flair.datasets import CONLL_03_GERMAN
corpus = CONLL_03_GERMAN()
# 2. what tag do we want to predict?
tag_type = 'ner'
# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
# 4. initialize fine-tuneable transformer embeddings WITH document context
from flair.embeddings import TransformerWordEmbeddings
embeddings = TransformerWordEmbeddings(
model='xlm-roberta-large',
layers="-1",
subtoken_pooling="first",
fine_tune=True,
use_context=True,
)
# 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection)
from flair.models import SequenceTagger
tagger = SequenceTagger(
hidden_size=256,
embeddings=embeddings,
tag_dictionary=tag_dictionary,
tag_type='ner',
use_crf=False,
use_rnn=False,
reproject_embeddings=False,
)
# 6. initialize trainer with AdamW optimizer
from flair.trainers import ModelTrainer
trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW)
# 7. run training with XLM parameters (20 epochs, small LR)
from torch.optim.lr_scheduler import OneCycleLR
trainer.train('resources/taggers/ner-german-large',
learning_rate=5.0e-6,
mini_batch_size=4,
mini_batch_chunk_size=1,
max_epochs=20,
scheduler=OneCycleLR,
embeddings_storage_mode='none',
weight_decay=0.,
)
)
使用此模型时,请引用以下论文。
@misc{schweter2020flert,
title={FLERT: Document-Level Features for Named Entity Recognition},
author={Stefan Schweter and Alan Akbik},
year={2020},
eprint={2011.06993},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Flair问题跟踪器位于 here 。