模型:
facebook/xmod-base
X-MOD是一个多语言掩码语言模型,训练数据来源于过滤后的CommonCrawl数据,含有81种语言。它在论文 Lifting the Curse of Multilinguality by Pre-training Modular Transformers (Pfeiffer et al., NAACL 2022)中被介绍,并于 this repository 时首次发布。
由于它是使用了特定语言的模块化组件(语言适配器)进行预训练的,所以X-MOD与以前的多语言模型如 XLM-R 有所不同。在微调过程中,每个变压器层中的语言适配器将被冻结。
此模型重用了 XLM-R 的分词器,所以您可以按照以下方式加载分词器:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
因为该模型使用了语言适配器,所以需要指定输入的语言,以激活正确的适配器:
from transformers import XmodModel
model = XmodModel.from_pretrained("jvamvas/xmod-base")
model.set_default_language("en_XX")
该模型中的语言适配器目录位于本模型卡片底部。
在原始论文的实验中,微调过程中会冻结嵌入层和语言适配器。代码提供了这样做的方法:
model.freeze_embeddings_and_language_adapters() # Fine-tune the model ...
在微调完成后,可以通过激活目标语言的语言适配器来进行零样本跨语言传递测试:
model.set_default_language("de_DE")
# Evaluate the model on German examples ...
请参阅 XLM-R 的模型卡片,因为X-MOD具有类似的架构并且是在类似的训练数据上进行的训练。
BibTeX:
@inproceedings{pfeiffer-etal-2022-lifting,
title = "Lifting the Curse of Multilinguality by Pre-training Modular Transformers",
author = "Pfeiffer, Jonas and
Goyal, Naman and
Lin, Xi and
Li, Xian and
Cross, James and
Riedel, Sebastian and
Artetxe, Mikel",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.255",
doi = "10.18653/v1/2022.naacl-main.255",
pages = "3479--3495"
}
该模型包含以下语言适配器:
| lang_id (Adapter index) | Language code | Language |
|---|---|---|
| 0 | en_XX | English |
| 1 | id_ID | Indonesian |
| 2 | vi_VN | Vietnamese |
| 3 | ru_RU | Russian |
| 4 | fa_IR | Persian |
| 5 | sv_SE | Swedish |
| 6 | ja_XX | Japanese |
| 7 | fr_XX | French |
| 8 | de_DE | German |
| 9 | ro_RO | Romanian |
| 10 | ko_KR | Korean |
| 11 | hu_HU | Hungarian |
| 12 | es_XX | Spanish |
| 13 | fi_FI | Finnish |
| 14 | uk_UA | Ukrainian |
| 15 | da_DK | Danish |
| 16 | pt_XX | Portuguese |
| 17 | no_XX | Norwegian |
| 18 | th_TH | Thai |
| 19 | pl_PL | Polish |
| 20 | bg_BG | Bulgarian |
| 21 | nl_XX | Dutch |
| 22 | zh_CN | Chinese (simplified) |
| 23 | he_IL | Hebrew |
| 24 | el_GR | Greek |
| 25 | it_IT | Italian |
| 26 | sk_SK | Slovak |
| 27 | hr_HR | Croatian |
| 28 | tr_TR | Turkish |
| 29 | ar_AR | Arabic |
| 30 | cs_CZ | Czech |
| 31 | lt_LT | Lithuanian |
| 32 | hi_IN | Hindi |
| 33 | zh_TW | Chinese (traditional) |
| 34 | ca_ES | Catalan |
| 35 | ms_MY | Malay |
| 36 | sl_SI | Slovenian |
| 37 | lv_LV | Latvian |
| 38 | ta_IN | Tamil |
| 39 | bn_IN | Bengali |
| 40 | et_EE | Estonian |
| 41 | az_AZ | Azerbaijani |
| 42 | sq_AL | Albanian |
| 43 | sr_RS | Serbian |
| 44 | kk_KZ | Kazakh |
| 45 | ka_GE | Georgian |
| 46 | tl_XX | Tagalog |
| 47 | ur_PK | Urdu |
| 48 | is_IS | Icelandic |
| 49 | hy_AM | Armenian |
| 50 | ml_IN | Malayalam |
| 51 | mk_MK | Macedonian |
| 52 | be_BY | Belarusian |
| 53 | la_VA | Latin |
| 54 | te_IN | Telugu |
| 55 | eu_ES | Basque |
| 56 | gl_ES | Galician |
| 57 | mn_MN | Mongolian |
| 58 | kn_IN | Kannada |
| 59 | ne_NP | Nepali |
| 60 | sw_KE | Swahili |
| 61 | si_LK | Sinhala |
| 62 | mr_IN | Marathi |
| 63 | af_ZA | Afrikaans |
| 64 | gu_IN | Gujarati |
| 65 | cy_GB | Welsh |
| 66 | eo_EO | Esperanto |
| 67 | km_KH | Central Khmer |
| 68 | ky_KG | Kirghiz |
| 69 | uz_UZ | Uzbek |
| 70 | ps_AF | Pashto |
| 71 | pa_IN | Punjabi |
| 72 | ga_IE | Irish |
| 73 | ha_NG | Hausa |
| 74 | am_ET | Amharic |
| 75 | lo_LA | Lao |
| 76 | ku_TR | Kurdish |
| 77 | so_SO | Somali |
| 78 | my_MM | Burmese |
| 79 | or_IN | Oriya |
| 80 | sa_IN | Sanskrit |