模型:
deepset/all-mpnet-base-v2-table
This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('deepset/all-mpnet-base-v2-table') embeddings = model.encode(sentences) print(embeddings)
For an automated evaluation of this model, see the Sentence Embeddings Benchmark : https://seb.sbert.net
The model was trained with the parameters:
DataLoader :
torch.utils.data.dataloader.DataLoader of length 5010 with parameters:
{'batch_size': 24, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss :
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
Parameters of the fit()-Method:
{ "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 }
SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() )