This repository contains the mT5 checkpoint finetuned on the 45 languages of XL-Sum dataset. For finetuning details and scripts, see the paper and the official repository .
import re from transformers import AutoTokenizer, AutoModelForSeq2SeqLM WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip())) article_text = """Videos that say approved vaccines are dangerous and cause autism, cancer or infertility are among those that will be taken down, the company said. The policy includes the termination of accounts of anti-vaccine influencers. Tech giants have been criticised for not doing more to counter false health information on their sites. In July, US President Joe Biden said social media platforms were largely responsible for people's scepticism in getting vaccinated by spreading misinformation, and appealed for them to address the issue. YouTube, which is owned by Google, said 130,000 videos were removed from its platform since last year, when it implemented a ban on content spreading misinformation about Covid vaccines. In a blog post, the company said it had seen false claims about Covid jabs "spill over into misinformation about vaccines in general". The new policy covers long-approved vaccines, such as those against measles or hepatitis B. "We're expanding our medical misinformation policies on YouTube with new guidelines on currently administered vaccines that are approved and confirmed to be safe and effective by local health authorities and the WHO," the post said, referring to the World Health Organization.""" model_name = "csebuetnlp/mT5_multilingual_XLSum" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) input_ids = tokenizer( [WHITESPACE_HANDLER(article_text)], return_tensors="pt", padding="max_length", truncation=True, max_length=512 )["input_ids"] output_ids = model.generate( input_ids=input_ids, max_length=84, no_repeat_ngram_size=2, num_beams=4 )[0] summary = tokenizer.decode( output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(summary)
Scores on the XL-Sum test sets are as follows:
Language | ROUGE-1 / ROUGE-2 / ROUGE-L |
---|---|
Amharic | 20.0485 / 7.4111 / 18.0753 |
Arabic | 34.9107 / 14.7937 / 29.1623 |
Azerbaijani | 21.4227 / 9.5214 / 19.3331 |
Bengali | 29.5653 / 12.1095 / 25.1315 |
Burmese | 15.9626 / 5.1477 / 14.1819 |
Chinese (Simplified) | 39.4071 / 17.7913 / 33.406 |
Chinese (Traditional) | 37.1866 / 17.1432 / 31.6184 |
English | 37.601 / 15.1536 / 29.8817 |
French | 35.3398 / 16.1739 / 28.2041 |
Gujarati | 21.9619 / 7.7417 / 19.86 |
Hausa | 39.4375 / 17.6786 / 31.6667 |
Hindi | 38.5882 / 16.8802 / 32.0132 |
Igbo | 31.6148 / 10.1605 / 24.5309 |
Indonesian | 37.0049 / 17.0181 / 30.7561 |
Japanese | 48.1544 / 23.8482 / 37.3636 |
Kirundi | 31.9907 / 14.3685 / 25.8305 |
Korean | 23.6745 / 11.4478 / 22.3619 |
Kyrgyz | 18.3751 / 7.9608 / 16.5033 |
Marathi | 22.0141 / 9.5439 / 19.9208 |
Nepali | 26.6547 / 10.2479 / 24.2847 |
Oromo | 18.7025 / 6.1694 / 16.1862 |
Pashto | 38.4743 / 15.5475 / 31.9065 |
Persian | 36.9425 / 16.1934 / 30.0701 |
Pidgin | 37.9574 / 15.1234 / 29.872 |
Portuguese | 37.1676 / 15.9022 / 28.5586 |
Punjabi | 30.6973 / 12.2058 / 25.515 |
Russian | 32.2164 / 13.6386 / 26.1689 |
Scottish Gaelic | 29.0231 / 10.9893 / 22.8814 |
Serbian (Cyrillic) | 23.7841 / 7.9816 / 20.1379 |
Serbian (Latin) | 21.6443 / 6.6573 / 18.2336 |
Sinhala | 27.2901 / 13.3815 / 23.4699 |
Somali | 31.5563 / 11.5818 / 24.2232 |
Spanish | 31.5071 / 11.8767 / 24.0746 |
Swahili | 37.6673 / 17.8534 / 30.9146 |
Tamil | 24.3326 / 11.0553 / 22.0741 |
Telugu | 19.8571 / 7.0337 / 17.6101 |
Thai | 37.3951 / 17.275 / 28.8796 |
Tigrinya | 25.321 / 8.0157 / 21.1729 |
Turkish | 32.9304 / 15.5709 / 29.2622 |
Ukrainian | 23.9908 / 10.1431 / 20.9199 |
Urdu | 39.5579 / 18.3733 / 32.8442 |
Uzbek | 16.8281 / 6.3406 / 15.4055 |
Vietnamese | 32.8826 / 16.2247 / 26.0844 |
Welsh | 32.6599 / 11.596 / 26.1164 |
Yoruba | 31.6595 / 11.6599 / 25.0898 |
If you use this model, please cite the following paper:
@inproceedings{hasan-etal-2021-xl, title = "{XL}-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages", author = "Hasan, Tahmid and Bhattacharjee, Abhik and Islam, Md. Saiful and Mubasshir, Kazi and Li, Yuan-Fang and Kang, Yong-Bin and Rahman, M. Sohel and Shahriyar, Rifat", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.413", pages = "4693--4703", }