This is an updated version of cointegrated/rubert-tiny : a small Russian BERT-based encoder with high-quality sentence embeddings. This post in Russian gives more details.
The differences from the previous version include:
The model should be used as is to produce sentence embeddings (e.g. for KNN classification of short texts) or fine-tuned for a downstream task.
Sentence embeddings can be produced as follows:
# pip install transformers sentencepiece import torch from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("cointegrated/rubert-tiny2") model = AutoModel.from_pretrained("cointegrated/rubert-tiny2") # model.cuda() # uncomment it if you have a GPU def embed_bert_cls(text, model, tokenizer): t = tokenizer(text, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = model(**{k: v.to(model.device) for k, v in t.items()}) embeddings = model_output.last_hidden_state[:, 0, :] embeddings = torch.nn.functional.normalize(embeddings) return embeddings[0].cpu().numpy() print(embed_bert_cls('привет мир', model, tokenizer).shape) # (312,)