模型:
cointegrated/rubert-tiny-toxicity
This is the cointegrated/rubert-tiny model fine-tuned for classification of toxicity and inappropriateness for short informal Russian texts, such as comments in social networks.
The problem is formulated as multilabel classification with the following classes:
A text can be considered safe if it is BOTH non-toxic and NOT dangerous .
The function below estimates the probability that the text is either toxic OR dangerous:
# !pip install transformers sentencepiece --quiet import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification model_checkpoint = 'cointegrated/rubert-tiny-toxicity' tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint) if torch.cuda.is_available(): model.cuda() def text2toxicity(text, aggregate=True): """ Calculate toxicity of a text (if aggregate=True) or a vector of toxicity aspects (if aggregate=False)""" with torch.no_grad(): inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(model.device) proba = torch.sigmoid(model(**inputs).logits).cpu().numpy() if isinstance(text, str): proba = proba[0] if aggregate: return 1 - proba.T[0] * (1 - proba.T[-1]) return proba print(text2toxicity('я люблю нигеров', True)) # 0.9350118728093193 print(text2toxicity('я люблю нигеров', False)) # [0.9715758 0.0180863 0.0045551 0.00189755 0.9331106 ] print(text2toxicity(['я люблю нигеров', 'я люблю африканцев'], True)) # [0.93501186 0.04156357] print(text2toxicity(['я люблю нигеров', 'я люблю африканцев'], False)) # [[9.7157580e-01 1.8086294e-02 4.5550885e-03 1.8975559e-03 9.3311059e-01] # [9.9979788e-01 1.9048342e-04 1.5297388e-04 1.7452303e-04 4.1369814e-02]]
The model has been trained on the joint dataset of OK ML Cup and Babakov et.al. with Adam optimizer, the learning rate of 1e-5 , and batch size of 64 for 15 epochs. A text was considered inappropriate if its inappropriateness score was higher than 0.8, and appropriate - if it was lower than 0.2. The per-label ROC AUC on the dev set is:
non-toxic : 0.9937 insult : 0.9912 obscenity : 0.9881 threat : 0.9910 dangerous : 0.8295