模型:
cardiffnlp/twitter-roberta-base-sep2022
这是一个基于RoBERTa-base的模型,训练数据包括168.86M条推特直到2022年9月底(每次增加15M条推特)。更多详细信息和性能评分在 TimeLMs paper 中可见。
在下方,我们提供了一些使用标准Transformers接口的示例。如果需要使用另一种接口以便于比较在不同时间间隔训练的模型的预测和困惑度得分,请查看 TimeLMs repository 。
对于训练至不同时间段的其他模型,请查看 table 。
将用户名和链接替换为占位符:"@user"和"http"。如果您有兴趣保留在训练期间也被保留的已验证用户,请保留列在 here 中的用户。
def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text)
from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-sep2022" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5)
输出:
------------------------------ So glad I'm <mask> vaccinated. 1) 0.60140 not 2) 0.15077 getting 3) 0.12119 fully 4) 0.02203 still 5) 0.01020 all ------------------------------ I keep forgetting to bring a <mask>. 1) 0.05812 charger 2) 0.05040 backpack 3) 0.05004 book 4) 0.04548 bag 5) 0.03992 lighter ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.39552 the 2) 0.28083 The 3) 0.02029 End 4) 0.01878 Squid 5) 0.01438 this
from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-sep2022" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken ?", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet))
输出:
Most similar to: The book was awesome ------------------------------ 1) 0.98914 The movie was great 2) 0.96194 Just finished reading 'Embeddings in NLP' 3) 0.94603 What time is the next game? 4) 0.94580 I just ordered fried chicken ?
from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-sep2022" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night ?" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0)