模型:
cahya/whisper-medium-id
This model is a fine-tuned version of openai/whisper-medium on the Indonesian mozilla-foundation/common_voice_11_0, magic_data, titml and google/fleurs dataset. It achieves the following results:
from transformers import pipeline transcriber = pipeline( "automatic-speech-recognition", model="cahya/whisper-medium-id" ) transcriber.model.config.forced_decoder_ids = ( transcriber.tokenizer.get_decoder_prompt_ids( language="id" task="transcribe" ) ) transcription = transcriber("my_audio_file.mp3")
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0427 | 0.33 | 1000 | 0.0664 | 4.3807 |
0.042 | 0.66 | 2000 | 0.0658 | 3.9426 |
0.0265 | 0.99 | 3000 | 0.0657 | 3.8274 |
0.0211 | 1.32 | 4000 | 0.0679 | 3.8366 |
0.0212 | 1.66 | 5000 | 0.0682 | 3.8412 |
0.0206 | 1.99 | 6000 | 0.0683 | 3.8689 |
0.0166 | 2.32 | 7000 | 0.0711 | 3.9657 |
0.0095 | 2.65 | 8000 | 0.0717 | 3.9980 |
0.0122 | 2.98 | 9000 | 0.0714 | 3.9795 |
0.0049 | 3.31 | 10000 | 0.0720 | 3.9887 |
We evaluated the model using the test split of two datasets, the Common Voice 11 and the Google Fleurs . As Whisper can transcribe casing and punctuation, we also evaluate its performance using raw and normalized text. (lowercase + removal of punctuations). The results are as follows:
WER | |
---|---|
cahya/whisper-medium-id | 3.83 |
openai/whisper-medium | 12.62 |
WER | |
---|---|
cahya/whisper-medium-id | 9.74 |
cahya/whisper-medium-id + text normalization | tbc |
openai/whisper-medium | 10.2 |
openai/whisper-medium + text normalization | tbc |