模型:
airesearch/wav2vec2-large-xlsr-53-th
Finetuning wav2vec2-large-xlsr-53 on Thai Common Voice 7.0
We finetune wav2vec2-large-xlsr-53 based on Fine-tuning Wav2Vec2 for English ASR using Thai examples of Common Voice Corpus 7.0 . The notebooks and scripts can be found in vistec-ai/wav2vec2-large-xlsr-53-th . The pretrained model and processor can be found at airesearch/wav2vec2-large-xlsr-53-th .
Add syllable_tokenize , word_tokenize ( PyThaiNLP ) and deepcut tokenizers to eval.py from robust-speech-event
> python eval.py --model_id ./ --dataset mozilla-foundation/common_voice_7_0 --config th --split test --log_outputs --thai_tokenizer newmm/syllable/deepcut/cer
WER PyThaiNLP 2.3.1 | WER deepcut | SER | CER | |
---|---|---|---|---|
Only Tokenization | 0.9524% | 2.5316% | 1.2346% | 0.1623% |
Cleaning rules and Tokenization | TBD | TBD | TBD | TBD |
#load pretrained processor and model processor = Wav2Vec2Processor.from_pretrained("airesearch/wav2vec2-large-xlsr-53-th") model = Wav2Vec2ForCTC.from_pretrained("airesearch/wav2vec2-large-xlsr-53-th") #function to resample to 16_000 def speech_file_to_array_fn(batch, text_col="sentence", fname_col="path", resampling_to=16000): speech_array, sampling_rate = torchaudio.load(batch[fname_col]) resampler=torchaudio.transforms.Resample(sampling_rate, resampling_to) batch["speech"] = resampler(speech_array)[0].numpy() batch["sampling_rate"] = resampling_to batch["target_text"] = batch[text_col] return batch #get 2 examples as sample input test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) #infer with torch.no_grad(): logits = model(inputs.input_values,).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) >> Prediction: ['และ เขา ก็ สัมผัส ดีบุก', 'คุณ สามารถ รับทราบ เมื่อ ข้อความ นี้ ถูก อ่าน แล้ว'] >> Reference: ['และเขาก็สัมผัสดีบุก', 'คุณสามารถรับทราบเมื่อข้อความนี้ถูกอ่านแล้ว']
Common Voice Corpus 7.0]( https://commonvoice.mozilla.org/en/datasets ) contains 133 validated hours of Thai (255 total hours) at 5GB. We pre-tokenize with pythainlp.tokenize.word_tokenize . We preprocess the dataset using cleaning rules described in notebooks/cv-preprocess.ipynb by @tann9949 . We then deduplicate and split as described in ekapolc/Thai_commonvoice_split in order to 1) avoid data leakage due to random splits after cleaning in Common Voice Corpus 7.0 and 2) preserve the majority of the data for the training set. The dataset loading script is scripts/th_common_voice_70.py . You can use this scripts together with train_cleand.tsv , validation_cleaned.tsv and test_cleaned.tsv to have the same splits as we do. The resulting dataset is as follows:
DatasetDict({ train: Dataset({ features: ['path', 'sentence'], num_rows: 86586 }) test: Dataset({ features: ['path', 'sentence'], num_rows: 2502 }) validation: Dataset({ features: ['path', 'sentence'], num_rows: 3027 }) })
We fintuned using the following configuration on a single V100 GPU and chose the checkpoint with the lowest validation loss. The finetuning script is scripts/wav2vec2_finetune.py
# create model model = Wav2Vec2ForCTC.from_pretrained( "facebook/wav2vec2-large-xlsr-53", attention_dropout=0.1, hidden_dropout=0.1, feat_proj_dropout=0.0, mask_time_prob=0.05, layerdrop=0.1, gradient_checkpointing=True, ctc_loss_reduction="mean", pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer) ) model.freeze_feature_extractor() training_args = TrainingArguments( output_dir="../data/wav2vec2-large-xlsr-53-thai", group_by_length=True, per_device_train_batch_size=32, gradient_accumulation_steps=1, per_device_eval_batch_size=16, metric_for_best_model='wer', evaluation_strategy="steps", eval_steps=1000, logging_strategy="steps", logging_steps=1000, save_strategy="steps", save_steps=1000, num_train_epochs=100, fp16=True, learning_rate=1e-4, warmup_steps=1000, save_total_limit=3, report_to="tensorboard" )
We benchmark on the test set using WER with words tokenized by PyThaiNLP 2.3.1 and deepcut , and CER. We also measure performance when spell correction using TNC ngrams is applied. Evaluation codes can be found in notebooks/wav2vec2_finetuning_tutorial.ipynb . Benchmark is performed on test-unique split.
WER PyThaiNLP 2.3.1 | WER deepcut | CER | |
---|---|---|---|
Kaldi from scratch | 23.04 | 7.57 | |
Ours without spell correction | 13.634024 | 8.152052 | 2.813019 |
Ours with spell correction | 17.996397 | 14.167975 | 5.225761 |
Google Web Speech API※ | 13.711234 | 10.860058 | 7.357340 |
Microsoft Bing Speech API※ | 12.578819 | 9.620991 | 5.016620 |
Amazon Transcribe※ | 21.86334 | 14.487553 | 7.077562 |
NECTEC AI for Thai Partii API※ | 20.105887 | 15.515631 | 9.551027 |
※ APIs are not finetuned with Common Voice 7.0 data