这是一个 sentence-transformers 模型:它将句子和段落映射到1024维的稠密向量空间,可用于聚类或语义搜索等任务。
特别感谢 deepset 提供的gBERT-large模型,以及 Philip May 对数据集的翻译和关于该主题的讨论。
经过微调后,模型得分最好,与这些模型相比:
Model Name | Spearman |
---|---|
xlm-r-distilroberta-base-paraphrase-v1 | 0.8079 |
12310321 | 0.7877 |
xlm-r-bert-base-nli-stsb-mean-tokens | 0.7877 |
12311321 | 0.6371 |
12312321 | 0.8529 |
12313321 | 0.8355 |
12314321 | 0.8550 |
aari1995/German_Semantic_STS_V2 | 0.8626 |
安装 sentence-transformers 后,使用这个模型非常简单:
pip install -U sentence-transformers
然后你可以像这样使用模型:
from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aari1995/German_Semantic_STS_V2') embeddings = model.encode(sentences) print(embeddings)
如果没有 sentence-transformers ,可以像这样使用模型:首先,将输入通过变换器模型,然后必须在情境化的词嵌入之上应用正确的汇聚操作。
from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aari1995/German_Semantic_STS_V2') model = AutoModel.from_pretrained('aari1995/German_Semantic_STS_V2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings)
要对该模型进行自动评估,请参阅句子嵌入基准: https://seb.sbert.net
模型使用以下参数进行训练:
DataLoader:
torch.utils.data.dataloader.DataLoader,长度为1438,带有以下参数:
{'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss,带有以下参数:
{'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True}
fit()方法的参数:
{ "epochs": 4, "evaluation_steps": 500, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 5e-06 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 576, "weight_decay": 0.01 }
SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) )
基本模型由deepset进行训练。数据集由Philip May发布/翻译。模型由Aaron Chibb进行了微调。