模型:
VoVanPhuc/sup-SimCSE-VietNamese-phobert-base
预训练的SimeCSE_Vietnamese模型是Vietnamese句子嵌入的最新技术:
Model | #params | Arch. |
---|---|---|
1237321 | 135M | base |
1238321 | 135M | base |
安装sentence-transformers:
安装pyvi用于分词:
from sentence_transformers import SentenceTransformer from pyvi.ViTokenizer import tokenize model = SentenceTransformer('VoVanPhuc/sup-SimCSE-VietNamese-phobert-base') sentences = ['Kẻ đánh bom đinh tồi tệ nhất nước Anh.', 'Nghệ sĩ làm thiện nguyện - minh bạch là việc cấp thiết.', 'Bắc Giang tăng khả năng điều trị và xét nghiệm.', 'HLV futsal Việt Nam tiết lộ lý do hạ Lebanon.', 'việc quan trọng khi kêu gọi quyên góp từ thiện là phải minh bạch, giải ngân kịp thời.', '20% bệnh nhân Covid-19 có thể nhanh chóng trở nặng.', 'Thái Lan thua giao hữu trước vòng loại World Cup.', 'Cựu tuyển thủ Nguyễn Bảo Quân: May mắn ủng hộ futsal Việt Nam', 'Chủ ki-ốt bị đâm chết trong chợ đầu mối lớn nhất Thanh Hoá.', 'Bắn chết người trong cuộc rượt đuổi trên sông.' ] sentences = [tokenize(sentence) for sentence in sentences] embeddings = model.encode(sentences)
安装transformers:
安装pyvi用于分词:
import torch from transformers import AutoModel, AutoTokenizer from pyvi.ViTokenizer import tokenize PhobertTokenizer = AutoTokenizer.from_pretrained("VoVanPhuc/sup-SimCSE-VietNamese-phobert-base") model = AutoModel.from_pretrained("VoVanPhuc/sup-SimCSE-VietNamese-phobert-base") sentences = ['Kẻ đánh bom đinh tồi tệ nhất nước Anh.', 'Nghệ sĩ làm thiện nguyện - minh bạch là việc cấp thiết.', 'Bắc Giang tăng khả năng điều trị và xét nghiệm.', 'HLV futsal Việt Nam tiết lộ lý do hạ Lebanon.', 'việc quan trọng khi kêu gọi quyên góp từ thiện là phải minh bạch, giải ngân kịp thời.', '20% bệnh nhân Covid-19 có thể nhanh chóng trở nặng.', 'Thái Lan thua giao hữu trước vòng loại World Cup.', 'Cựu tuyển thủ Nguyễn Bảo Quân: May mắn ủng hộ futsal Việt Nam', 'Chủ ki-ốt bị đâm chết trong chợ đầu mối lớn nhất Thanh Hoá.', 'Bắn chết người trong cuộc rượt đuổi trên sông.' ] sentences = [tokenize(sentence) for sentence in sentences] inputs = PhobertTokenizer(sentences, padding=True, truncation=True, return_tensors="pt") with torch.no_grad(): embeddings = model(**inputs, output_hidden_states=True, return_dict=True).pooler_output
@article{gao2021simcse, title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings}, author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi}, journal={arXiv preprint arXiv:2104.08821}, year={2021} } @inproceedings{phobert, title = {{PhoBERT: Pre-trained language models for Vietnamese}}, author = {Dat Quoc Nguyen and Anh Tuan Nguyen}, booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2020}, year = {2020}, pages = {1037--1042} }