模型:

TheBloke/wizard-vicuna-13B-GPTQ

中文

Chat & support: my new Discord server

Want to contribute? TheBloke's Patreon page

Wizard-Vicuna-13B-GPTQ

This repo contains 4bit GPTQ format quantised models of junelee's wizard-vicuna 13B .

It is the result of quantising to 4bit using GPTQ-for-LLaMa .

Repositories available

How to easily download and use this model in text-generation-webui

Open the text-generation-webui UI as normal.

  • Click the Model tab .
  • Under Download custom model or LoRA , enter TheBloke/wizard-vicuna-13B-GPTQ .
  • Click Download .
  • Wait until it says it's finished downloading.
  • Click the Refresh icon next to Model in the top left.
  • In the Model drop-down : choose the model you just downloaded, wizard-vicuna-13B-GPTQ .
  • If you see an error in the bottom right, ignore it - it's temporary.
  • Fill out the GPTQ parameters on the right: Bits = 4 , Groupsize = 128 , model_type = Llama
  • Click Save settings for this model in the top right.
  • Click Reload the Model in the top right.
  • Once it says it's loaded, click the Text Generation tab and enter a prompt!
  • Provided files

    Compatible file - wizard-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors

    In the main branch - the default one - you will find wizard-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors

    This will work with all versions of GPTQ-for-LLaMa. It has maximum compatibility

    It was created without the --act-order parameter. It may have slightly lower inference quality compared to the other file, but is guaranteed to work on all versions of GPTQ-for-LLaMa and text-generation-webui.

    • wizard-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors
      • Works with all versions of GPTQ-for-LLaMa code, both Triton and CUDA branches
      • Works with text-generation-webui one-click-installers
      • Parameters: Groupsize = 128g. No act-order.
      • Command used to create the GPTQ:
        CUDA_VISIBLE_DEVICES=0 python3 llama.py wizard-vicuna-13B-HF c4 --wbits 4 --true-sequential --groupsize 128 --save_safetensors wizard-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors
        

    Discord

    For further support, and discussions on these models and AI in general, join us at:

    TheBloke AI's Discord server

    Thanks, and how to contribute.

    Thanks to the chirper.ai team!

    I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

    If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

    Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

    Patreon special mentions : Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.

    Thank you to all my generous patrons and donaters!

    Original WizardVicuna-13B model card

    Github page: https://github.com/melodysdreamj/WizardVicunaLM

    WizardVicunaLM

    Wizard's dataset + ChatGPT's conversation extension + Vicuna's tuning method

    I am a big fan of the ideas behind WizardLM and VicunaLM. I particularly like the idea of WizardLM handling the dataset itself more deeply and broadly, as well as VicunaLM overcoming the limitations of single-turn conversations by introducing multi-round conversations. As a result, I combined these two ideas to create WizardVicunaLM. This project is highly experimental and designed for proof of concept, not for actual usage.

    Benchmark

    Approximately 7% performance improvement over VicunaLM

    Detail

    The questions presented here are not from rigorous tests, but rather, I asked a few questions and requested GPT-4 to score them. The models compared were ChatGPT 3.5, WizardVicunaLM, VicunaLM, and WizardLM, in that order.

    gpt3.5 wizard-vicuna-13b vicuna-13b wizard-7b link
    Q1 95 90 85 88 link
    Q2 95 97 90 89 link
    Q3 85 90 80 65 link
    Q4 90 85 80 75 link
    Q5 90 85 80 75 link
    Q6 92 85 87 88 link
    Q7 95 90 85 92 link
    Q8 90 85 75 70 link
    Q9 92 85 70 60 link
    Q10 90 80 75 85 link
    Q11 90 85 75 65 link
    Q12 85 90 80 88 link
    Q13 90 95 88 85 link
    Q14 94 89 90 91 link
    Q15 90 85 88 87 link
    91 88 82 80

    Principle

    We adopted the approach of WizardLM, which is to extend a single problem more in-depth. However, instead of using individual instructions, we expanded it using Vicuna's conversation format and applied Vicuna's fine-tuning techniques.

    Turning a single command into a rich conversation is what we've done here .

    After creating the training data, I later trained it according to the Vicuna v1.1 training method .

    Detailed Method

    First, we explore and expand various areas in the same topic using the 7K conversations created by WizardLM. However, we made it in a continuous conversation format instead of the instruction format. That is, it starts with WizardLM's instruction, and then expands into various areas in one conversation using ChatGPT 3.5.

    After that, we applied the following model using Vicuna's fine-tuning format.

    Training Process

    Trained with 8 A100 GPUs for 35 hours.

    Weights

    You can see the dataset we used for training and the 13b model in the huggingface.

    Conclusion

    If we extend the conversation to gpt4 32K, we can expect a dramatic improvement, as we can generate 8x more, more accurate and richer conversations.

    License

    The model is licensed under the LLaMA model, and the dataset is licensed under the terms of OpenAI because it uses ChatGPT. Everything else is free.

    Author

    JUNE LEE - He is active in Songdo Artificial Intelligence Study and GDG Songdo.