中文

Chat & support: my new Discord server

Want to contribute? TheBloke's Patreon page

Falcon-40B-Instruct 4bit GPTQ

This repo contains an experimantal GPTQ 4bit model for Falcon-40B-Instruct .

It is the result of quantising to 4bit using AutoGPTQ .

Repositories available

Prompt template

A helpful assistant who helps the user with any questions asked.
User: prompt
Assistant:

EXPERIMENTAL

Please note this is an experimental GPTQ model. Support for it is currently quite limited.

It is also expected to be VERY SLOW . This is currently unavoidable, but is being looked at.

This 4bit model requires at least 35GB VRAM to load. It can be used on 40GB or 48GB cards, but not less.

Please be aware that you should currently expect around 0.7 tokens/s on 40B Falcon GPTQ.

AutoGPTQ

AutoGPTQ is required: pip install auto-gptq

AutoGPTQ provides pre-compiled wheels for Windows and Linux, with CUDA toolkit 11.7 or 11.8.

If you are running CUDA toolkit 12.x, you will need to compile your own by following these instructions:

git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
pip install .

These manual steps will require that you have the Nvidia CUDA toolkit installed.

text-generation-webui

There is provisional AutoGPTQ support in text-generation-webui.

This requires text-generation-webui as of commit 204731952ae59d79ea3805a425c73dd171d943c3.

So please first update text-genration-webui to the latest version.

How to download and use this model in text-generation-webui

  • Launch text-generation-webui
  • Click the Model tab .
  • Untick Autoload model
  • Under Download custom model or LoRA , enter TheBloke/falcon-40B-instruct-GPTQ .
  • Click Download .
  • Wait until it says it's finished downloading.
  • Click the Refresh icon next to Model in the top left.
  • In the Model drop-down : choose the model you just downloaded, falcon-40B-instruct-GPTQ .
  • Make sure Loader is set to AutoGPTQ . This model will not work with ExLlama or GPTQ-for-LLaMa.
  • Tick Trust Remote Code , followed by Save Settings
  • Click Reload .
  • Once it says it's loaded, click the Text Generation tab and enter a prompt!
  • About trust_remote_code

    Please be aware that this command line argument causes Python code provided by Falcon to be executed on your machine.

    This code is required at the moment because Falcon is too new to be supported by Hugging Face transformers. At some point in the future transformers will support the model natively, and then trust_remote_code will no longer be needed.

    In this repo you can see two .py files - these are the files that get executed. They are copied from the base repo at Falcon-7B-Instruct .

    Simple Python example code

    To run this code you need to install AutoGPTQ and einops:

    pip install auto-gptq
    pip install einops
    

    You can then run this example code:

    from transformers import AutoTokenizer, pipeline, logging
    from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
    import argparse
    
    model_name_or_path = "TheBloke/falcon-40b-instruct-GPTQ"
    # You could also download the model locally, and access it there
    # model_name_or_path = "/path/to/TheBloke_falcon-40b-instruct-GPTQ"
    
    model_basename = "gptq_model-4bit--1g"
    
    use_triton = False
    
    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
    
    model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
            model_basename=model_basename,
            use_safetensors=True,
            trust_remote_code=True,
            device="cuda:0",
            use_triton=use_triton,
            quantize_config=None)
    
    prompt = "Tell me about AI"
    prompt_template=f'''A helpful assistant who helps the user with any questions asked.
    User: {prompt}
    Assistant:''
    
    print("\n\n*** Generate:")
    
    input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
    output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
    print(tokenizer.decode(output[0]))
    
    # Inference can also be done using transformers' pipeline
    # Note that if you use pipeline, you will see a spurious error message saying the model type is not supported
    # This can be ignored!  Or you can hide it with the following logging line:
    # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
    logging.set_verbosity(logging.CRITICAL)
    
    print("*** Pipeline:")
    pipe = pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        max_new_tokens=512,
        temperature=0.7,
        top_p=0.95,
        repetition_penalty=1.15
    )
    
    print(pipe(prompt_template)[0]['generated_text'])
    

    Provided files

    gptq_model-4bit--1g.safetensors

    This will work with AutoGPTQ 0.2.0 and later.

    It was created without groupsize to reduce VRAM requirements, and with desc_act (act-order) to improve inference quality.

    • gptq_model-4bit--1g.safetensors
      • Works AutoGPTQ 0.2.0 and later.
        • At this time it does not work with AutoGPTQ Triton, but support will hopefully be added in time.
      • Works with text-generation-webui using --trust-remote-code
      • Does not work with any version of GPTQ-for-LLaMa
      • Parameters: Groupsize = None. Act order (desc_act)

    Discord

    For further support, and discussions on these models and AI in general, join us at:

    TheBloke AI's Discord server

    Thanks, and how to contribute.

    Thanks to the chirper.ai team!

    I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

    If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

    Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

    Patreon special mentions : Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.

    Thank you to all my generous patrons and donaters!

    ✨ Original model card: Falcon-40B-Instruct

    ✨ Falcon-40B-Instruct

    Falcon-40B-Instruct is a 40B parameters causal decoder-only model built by TII based on Falcon-40B and finetuned on a mixture of Baize . It is made available under the TII Falcon LLM License .

    Paper coming soon ?.

    Why use Falcon-40B-Instruct?

    ? This is an instruct model, which may not be ideal for further finetuning. If you are interested in building your own instruct/chat model, we recommend starting from Falcon-40B .

    ? Looking for a smaller, less expensive model? Falcon-7B-Instruct is Falcon-40B-Instruct's small brother!

    from transformers import AutoTokenizer, AutoModelForCausalLM
    import transformers
    import torch
    
    model = "tiiuae/falcon-40b-instruct"
    
    tokenizer = AutoTokenizer.from_pretrained(model)
    pipeline = transformers.pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        torch_dtype=torch.bfloat16,
        trust_remote_code=True,
        device_map="auto",
    )
    sequences = pipeline(
       "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
        max_length=200,
        do_sample=True,
        top_k=10,
        num_return_sequences=1,
        eos_token_id=tokenizer.eos_token_id,
    )
    for seq in sequences:
        print(f"Result: {seq['generated_text']}")
    

    Model Card for Falcon-40B-Instruct

    Model Details

    Model Description

    Model Source

    • Paper: coming soon .

    Uses

    Direct Use

    Falcon-40B-Instruct has been finetuned on a chat dataset.

    Out-of-Scope Use

    Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.

    Bias, Risks, and Limitations

    Falcon-40B-Instruct is mostly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.

    Recommendations

    We recommend users of Falcon-40B-Instruct to develop guardrails and to take appropriate precautions for any production use.

    How to Get Started with the Model

    from transformers import AutoTokenizer, AutoModelForCausalLM
    import transformers
    import torch
    
    model = "tiiuae/falcon-40b-instruct"
    
    tokenizer = AutoTokenizer.from_pretrained(model)
    pipeline = transformers.pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        torch_dtype=torch.bfloat16,
        trust_remote_code=True,
        device_map="auto",
    )
    sequences = pipeline(
       "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
        max_length=200,
        do_sample=True,
        top_k=10,
        num_return_sequences=1,
        eos_token_id=tokenizer.eos_token_id,
    )
    for seq in sequences:
        print(f"Result: {seq['generated_text']}")
    

    Training Details

    Training Data

    Falcon-40B-Instruct was finetuned on a 150M tokens from Bai ze mixed with 5% of RefinedWeb data.

    The data was tokenized with the Falcon- 7B / 40B tokenizer.

    Evaluation

    Paper coming soon.

    See the OpenLLM Leaderboard for early results.

    Technical Specifications

    For more information about pretraining, see Falcon-40B .

    Model Architecture and Objective

    Falcon-40B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).

    The architecture is broadly adapted from the GPT-3 paper ( Brown et al., 2020 ), with the following differences:

    For multiquery, we are using an internal variant which uses independent key and values per tensor parallel degree.

    Hyperparameter Value Comment
    Layers 60
    d_model 8192
    head_dim 64 Reduced to optimise for FlashAttention
    Vocabulary 65024
    Sequence length 2048

    Compute Infrastructure

    Hardware

    Falcon-40B-Instruct was trained on AWS SageMaker, on 64 A100 40GB GPUs in P4d instances.

    Software

    Falcon-40B-Instruct was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.)

    Citation

    Paper coming soon ?.

    License

    Falcon-40B-Instruct is made available under the TII Falcon LLM License . Broadly speaking,

    • You can freely use our models for research and/or personal purpose;
    • You are allowed to share and build derivatives of these models, but you are required to give attribution and to share-alike with the same license;
    • For commercial use, you are exempt from royalties payment if the attributable revenues are inferior to $1M/year, otherwise you should enter in a commercial agreement with TII.

    Contact

    falconllm@tii.ae