模型:
Salesforce/instructblip-flan-t5-xl
InstructBLIP model using Flan-T5-xl as language model. InstructBLIP was introduced in the paper InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning by Dai et al.
Disclaimer: The team releasing InstructBLIP did not write a model card for this model so this model card has been written by the Hugging Face team.
InstructBLIP is a visual instruction tuned version of BLIP-2 . Refer to the paper for details.
Usage is as follows:
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration import torch from PIL import Image import requests model = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-flan-t5-xl") processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-flan-t5-xl") device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") prompt = "What is unusual about this image?" inputs = processor(images=image, text=prompt, return_tensors="pt").to(device) outputs = model.generate( **inputs, do_sample=False, num_beams=5, max_length=256, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1.0, temperature=1, ) generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip() print(generated_text)
For code examples, we refer to the documentation .