模型:
RashidNLP/Amazon-Deberta-Base-Sentiment
This is a Deberta model finetuned on over 1 million reviews from Amazon's multi-reviews dataset.
import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer def get_sentiment(sentence): bert_dict = {} vectors = tokenizer(sentence, return_tensors='pt').to(device) outputs = bert_model(**vectors).logits probs = torch.nn.functional.softmax(outputs, dim = 1)[0] bert_dict['neg'] = round(probs[0].item(), 3) bert_dict['neu'] = round(probs[1].item(), 3) bert_dict['pos'] = round(probs[2].item(), 3) return bert_dict MODEL_NAME = 'RashidNLP/Amazon-Deberta-Base-Sentiment' device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') bert_model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels = 3).to(device) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) get_sentiment("This is quite a mess you have made")