模型:

Qiliang/bart-large-cnn-samsum-ElectrifAi_v10

中文

bart-large-cnn-samsum-ElectrifAi_v10

This model is a fine-tuned version of philschmid/bart-large-cnn-samsum on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1748
  • Rouge1: 58.3392
  • Rouge2: 35.1686
  • Rougel: 45.4136
  • Rougelsum: 56.9138
  • Gen Len: 108.375

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 21 1.1573 56.0772 34.1572 44.3652 54.8621 106.0833
No log 2.0 42 1.1764 57.7245 34.6517 45.67 56.3426 106.4167
No log 3.0 63 1.1748 58.3392 35.1686 45.4136 56.9138 108.375

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.1
  • Datasets 2.6.1
  • Tokenizers 0.13.2