模型:
KB/bert-base-swedish-cased
The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on aproximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on.
The following three models are currently available:
All models are cased and trained with whole word masking.
name | files |
---|---|
bert-base-swedish-cased | config , vocab , pytorch_model.bin |
bert-base-swedish-cased-ner | config , vocab pytorch_model.bin |
albert-base-swedish-cased-alpha | config , sentencepiece model , pytorch_model.bin |
TensorFlow model weights will be released soon.
The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the do_lower_case flag parameter set to False and keep_accents to True (for ALBERT).
To create an environment where the examples can be run, run the following in an terminal on your OS of choice.
# git clone https://github.com/Kungbib/swedish-bert-models # cd swedish-bert-models # python3 -m venv venv # source venv/bin/activate # pip install --upgrade pip # pip install -r requirements.txt
A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows:
from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KB/bert-base-swedish-cased') model = AutoModel.from_pretrained('KB/bert-base-swedish-cased')
This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings:
from transformers import pipeline nlp = pipeline('ner', model='KB/bert-base-swedish-cased-ner', tokenizer='KB/bert-base-swedish-cased-ner') nlp('Idag släpper KB tre språkmodeller.')
Running the Python code above should produce in something like the result below. Entity types used are TME for time, PRS for personal names, LOC for locations, EVN for events and ORG for organisations. These labels are subject to change.
[ { 'word': 'Idag', 'score': 0.9998126029968262, 'entity': 'TME' }, { 'word': 'KB', 'score': 0.9814832210540771, 'entity': 'ORG' } ]
The BERT tokenizer often splits words into multiple tokens, with the subparts starting with ## , for example the string Engelbert kör Volvo till Herrängens fotbollsklubb gets tokenized as Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb . To glue parts back together one can use something like this:
text = 'Engelbert tar Volvon till Tele2 Arena för att titta på Djurgården IF ' +\ 'som spelar fotboll i VM klockan två på kvällen.' l = [] for token in nlp(text): if token['word'].startswith('##'): l[-1]['word'] += token['word'][2:] else: l += [ token ] print(l)
Which should result in the following (though less cleanly formated):
[ { 'word': 'Engelbert', 'score': 0.99..., 'entity': 'PRS'}, { 'word': 'Volvon', 'score': 0.99..., 'entity': 'OBJ'}, { 'word': 'Tele2', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Arena', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Djurgården', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'IF', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'VM', 'score': 0.99..., 'entity': 'EVN'}, { 'word': 'klockan', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'två', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'på', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'kvällen', 'score': 0.54..., 'entity': 'TME'} ]
The easisest way to do this is, again, using Huggingface Transformers:
from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KB/albert-base-swedish-cased-alpha'), model = AutoModel.from_pretrained('KB/albert-base-swedish-cased-alpha')