模型:
CompVis/stable-diffusion-v1-2
Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. For more information about how Stable Diffusion functions, please have a look at ?'s Stable Diffusion with D?iffusers blog .
The Stable-Diffusion-v1-2 checkpoint was initialized with the weights of the Stable-Diffusion-v1-1 checkpoint and subsequently fine-tuned on 515,000 steps at resolution 512x512 on "laion-improved-aesthetics" (a subset of laion2B-en, filtered to images with an original size >= 512x512 , estimated aesthetics score > 5.0 , and an estimated watermark probability < 0.5 . For more information, please refer to Training .
This weights here are intended to be used with the D?iffusers library. If you are looking for the weights to be loaded into the CompVis Stable Diffusion codebase, come here
Developed by: Robin Rombach, Patrick Esser
Model type: Diffusion-based text-to-image generation model
Language(s): English
License: The CreativeML OpenRAIL M license is an Open RAIL M license , adapted from the work that BigScience and the RAIL Initiative are jointly carrying in the area of responsible AI licensing. See also the article about the BLOOM Open RAIL license on which our license is based.
Model Description: This is a model that can be used to generate and modify images based on text prompts. It is a Latent Diffusion Model that uses a fixed, pretrained text encoder ( CLIP ViT-L/14 ) as suggested in the Imagen paper .
Resources for more information: GitHub Repository , Paper .
Cite as:
@InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} }
We recommend using ?'s Diffusers library to run Stable Diffusion.
pip install --upgrade diffusers transformers scipy
Running the pipeline with the default PNDM scheduler:
import torch from torch import autocast from diffusers import StableDiffusionPipeline model_id = "CompVis/stable-diffusion-v1-2" device = "cuda" pipe = StableDiffusionPipeline.from_pretrained(model_id) pipe = pipe.to(device) prompt = "a photo of an astronaut riding a horse on mars" with autocast("cuda"): image = pipe(prompt)["sample"][0] image.save("astronaut_rides_horse.png")
Note : If you are limited by GPU memory and have less than 10GB of GPU RAM available, please make sure to load the StableDiffusionPipeline in float16 precision instead of the default float32 precision as done above. You can do so by telling diffusers to expect the weights to be in float16 precision:
import torch pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to(device) prompt = "a photo of an astronaut riding a horse on mars" with autocast("cuda"): image = pipe(prompt, guidance_scale=7.5)["sample"][0] image.save("astronaut_rides_horse.png")
To swap out the noise scheduler, pass it to from_pretrained :
from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler model_id = "CompVis/stable-diffusion-v1-2" # Use the K-LMS scheduler here instead scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, use_auth_token=True) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" with autocast("cuda"): image = pipe(prompt, guidance_scale=7.5)["sample"][0] image.save("astronaut_rides_horse.png")
The model is intended for research purposes only. Possible research areas and tasks include
Excluded uses are described below.
Note: This section is taken from the DALLE-MINI model card , but applies in the same way to Stable Diffusion v1 .
The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes.
Out-of-Scope UseThe model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
Misuse and Malicious UseUsing the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to:
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion v1 was trained on subsets of LAION-2B(en) , which consists of images that are primarily limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts.
The model developers used the following dataset for training the model:
Stable Diffusion v1-4 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training,
We currently provide four checkpoints, which were trained as follows.
Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and 50 PLMS sampling steps show the relative improvements of the checkpoints:
Evaluated using 50 PLMS steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores.
Stable Diffusion v1 Estimated Emissions Based on that information, we estimate the following CO2 emissions using the Machine Learning Impact calculator presented in Lacoste et al. (2019) . The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact.
@InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} }
This model card was written by: Robin Rombach and Patrick Esser and is based on the DALL-E Mini model card .