模型:
CAMeL-Lab/bert-base-arabic-camelbert-da-sentiment
CAMeLBERT-DA SA Model is a Sentiment Analysis (SA) model that was built by fine-tuning the CAMeLBERT Dialectal Arabic (DA) model. For the fine-tuning, we used the ASTD , ArSAS , and SemEval datasets. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *" The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models ."
You can use the CAMeLBERT-DA SA model directly as part of our CAMeL Tools SA component ( recommended ) or as part of the transformers pipeline.
How to useTo use the model with the CAMeL Tools SA component:
>>> from camel_tools.sentiment import SentimentAnalyzer >>> sa = SentimentAnalyzer("CAMeL-Lab/bert-base-arabic-camelbert-da-sentiment") >>> sentences = ['أنا بخير', 'أنا لست بخير'] >>> sa.predict(sentences) >>> ['positive', 'negative']
You can also use the SA model directly with a transformers pipeline:
>>> from transformers import pipeline >>> sa = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-da-sentiment') >>> sentences = ['أنا بخير', 'أنا لست بخير'] >>> sa(sentences) [{'label': 'positive', 'score': 0.9616648554801941}, {'label': 'negative', 'score': 0.9779177904129028}]
Note : to download our models, you would need transformers>=3.5.0 . Otherwise, you could download the models manually.
@inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", }