模型:

CAMeL-Lab/bert-base-arabic-camelbert-da-sentiment

中文

CAMeLBERT-DA SA Model

Model description

CAMeLBERT-DA SA Model is a Sentiment Analysis (SA) model that was built by fine-tuning the CAMeLBERT Dialectal Arabic (DA) model. For the fine-tuning, we used the ASTD , ArSAS , and SemEval datasets. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *" The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models ."

  • Our fine-tuning code can be found here .

Intended uses

You can use the CAMeLBERT-DA SA model directly as part of our CAMeL Tools SA component ( recommended ) or as part of the transformers pipeline.

How to use

To use the model with the CAMeL Tools SA component:

>>> from camel_tools.sentiment import SentimentAnalyzer
>>> sa = SentimentAnalyzer("CAMeL-Lab/bert-base-arabic-camelbert-da-sentiment")
>>> sentences = ['أنا بخير', 'أنا لست بخير']
>>> sa.predict(sentences)
>>> ['positive', 'negative']

You can also use the SA model directly with a transformers pipeline:

>>> from transformers import pipeline
>>> sa = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-da-sentiment')
>>> sentences = ['أنا بخير', 'أنا لست بخير']
>>> sa(sentences)
[{'label': 'positive', 'score': 0.9616648554801941},
 {'label': 'negative', 'score': 0.9779177904129028}]

Note : to download our models, you would need transformers>=3.5.0 . Otherwise, you could download the models manually.

Citation

@inproceedings{inoue-etal-2021-interplay,
    title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
    author = "Inoue, Go  and
      Alhafni, Bashar  and
      Baimukan, Nurpeiis  and
      Bouamor, Houda  and
      Habash, Nizar",
    booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
    month = apr,
    year = "2021",
    address = "Kyiv, Ukraine (Online)",
    publisher = "Association for Computational Linguistics",
    abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}