XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).
An example of 'train' looks as follows.
This example was too long and was cropped:
{
    "hypothesis": "{\"language\": [\"ar\", \"bg\", \"de\", \"el\", \"en\", \"es\", \"fr\", \"hi\", \"ru\", \"sw\", \"th\", \"tr\", \"ur\", \"vi\", \"zh\"], \"translation\": [\"احد اع...",
    "label": 0,
    "premise": "{\"ar\": \"واحدة من رقابنا ستقوم بتنفيذ تعليماتك كلها بكل دقة\", \"bg\": \"един от нашите номера ще ви даде инструкции .\", \"de\": \"Eine ..."
}
 ar
 An example of 'validation' looks as follows.
{
    "hypothesis": "اتصل بأمه حالما أوصلته حافلة المدرسية.",
    "label": 1,
    "premise": "وقال، ماما، لقد عدت للمنزل."
}
 bg
 An example of 'train' looks as follows.
This example was too long and was cropped:
{
    "hypothesis": "\"губиш нещата на следното ниво , ако хората си припомнят .\"...",
    "label": 0,
    "premise": "\"по време на сезона и предполагам , че на твоето ниво ще ги загубиш на следващото ниво , ако те решат да си припомнят отбора на ..."
}
 de
 An example of 'train' looks as follows.
This example was too long and was cropped:
{
    "hypothesis": "Man verliert die Dinge auf die folgende Ebene , wenn sich die Leute erinnern .",
    "label": 0,
    "premise": "\"Du weißt , während der Saison und ich schätze , auf deiner Ebene verlierst du sie auf die nächste Ebene , wenn sie sich entschl..."
}
 el
 An example of 'validation' looks as follows.
This example was too long and was cropped:
{
    "hypothesis": "\"Τηλεφώνησε στη μαμά του μόλις το σχολικό λεωφορείο τον άφησε.\"...",
    "label": 1,
    "premise": "Και είπε, Μαμά, έφτασα στο σπίτι."
}
 The data fields are the same among all splits.
all_languages| name | train | validation | test | 
|---|---|---|---|
| all_languages | 392702 | 2490 | 5010 | 
| ar | 392702 | 2490 | 5010 | 
| bg | 392702 | 2490 | 5010 | 
| de | 392702 | 2490 | 5010 | 
| el | 392702 | 2490 | 5010 | 
@InProceedings{conneau2018xnli,
  author = {Conneau, Alexis
                 and Rinott, Ruty
                 and Lample, Guillaume
                 and Williams, Adina
                 and Bowman, Samuel R.
                 and Schwenk, Holger
                 and Stoyanov, Veselin},
  title = {XNLI: Evaluating Cross-lingual Sentence Representations},
  booktitle = {Proceedings of the 2018 Conference on Empirical Methods
               in Natural Language Processing},
  year = {2018},
  publisher = {Association for Computational Linguistics},
  location = {Brussels, Belgium},
}
 Thanks to @lewtun , @mariamabarham , @thomwolf , @lhoestq , @patrickvonplaten for adding this dataset.