数据集:
sileod/movie_recommendation
语言:
计算机处理:
monolingual大小:
n<1K语言创建人:
crowdsourced批注创建人:
expert-generated源数据集:
original数字对象标识符:
10.57967/hf/0257许可:
We showed that pretrained large language models can act as a recommender system, and compare few-shot learning results to matrix factorization baselines. This is the BIG-Bench version of our language-based movie recommendation dataset.
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/movie_recommendation
GPT-2 has a 48.8% accuracy, chance is 25%. Human accuracy is 60.4%.
@InProceedings{sileodreclm22,
author="Sileo, Damien
and Vossen, Wout
and Raymaekers, Robbe",
editor="Hagen, Matthias
and Verberne, Suzan
and Macdonald, Craig
and Seifert, Christin
and Balog, Krisztian
and N{\o}rv{\aa}g, Kjetil
and Setty, Vinay",
title="Zero-Shot Recommendation as Language Modeling",
booktitle="Advances in Information Retrieval",
year="2022",
publisher="Springer International Publishing",
address="Cham",
pages="223--230",
isbn="978-3-030-99739-7"
}