数据集:

cardiffnlp/tweet_topic_single

中文

Dataset Card for "cardiffnlp/tweet_topic_single"

Dataset Summary

This is the official repository of TweetTopic ( "Twitter Topic Classification , COLING main conference 2022" ), a topic classification dataset on Twitter with 6 labels. Each instance of TweetTopic comes with a timestamp which distributes from September 2019 to August 2021. See cardiffnlp/tweet_topic_multi for multi label version of TweetTopic. The tweet collection used in TweetTopic is same as what used in TweetNER7 . The dataset is integrated in TweetNLP too.

Preprocessing

We pre-process tweets before the annotation to normalize some artifacts, converting URLs into a special token {{URL}} and non-verified usernames into {{USERNAME}} . For verified usernames, we replace its display name (or account name) with symbols {@} . For example, a tweet

Get the all-analog Classic Vinyl Edition
of "Takin' Off" Album from @herbiehancock
via @bluenoterecords link below: 
http://bluenote.lnk.to/AlbumOfTheWeek

is transformed into the following text.

Get the all-analog Classic Vinyl Edition
of "Takin' Off" Album from {@herbiehancock@}
via {@bluenoterecords@} link below: {{URL}}

A simple function to format tweet follows below.

import re
from urlextract import URLExtract
extractor = URLExtract()
def format_tweet(tweet):
    # mask web urls
    urls = extractor.find_urls(tweet)
    for url in urls:
        tweet = tweet.replace(url, "{{URL}}")
    # format twitter account
    tweet = re.sub(r"\b(\s*)(@[\S]+)\b", r'\1{\2@}', tweet)
    return tweet
target = """Get the all-analog Classic Vinyl Edition of "Takin' Off" Album from @herbiehancock via @bluenoterecords link below: http://bluenote.lnk.to/AlbumOfTheWeek"""
target_format = format_tweet(target)
print(target_format)
'Get the all-analog Classic Vinyl Edition of "Takin\' Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below: {{URL}}'

Data Splits

split number of texts description
test_2020 376 test dataset from September 2019 to August 2020
test_2021 1693 test dataset from September 2020 to August 2021
train_2020 2858 training dataset from September 2019 to August 2020
train_2021 1516 training dataset from September 2020 to August 2021
train_all 4374 combined training dataset of train_2020 and train_2021
validation_2020 352 validation dataset from September 2019 to August 2020
validation_2021 189 validation dataset from September 2020 to August 2021
train_random 2830 randomly sampled training dataset with the same size as train_2020 from train_all
validation_random 354 randomly sampled training dataset with the same size as validation_2020 from validation_all
test_coling2022_random 3399 random split used in the COLING 2022 paper
train_coling2022_random 3598 random split used in the COLING 2022 paper
test_coling2022 3399 temporal split used in the COLING 2022 paper
train_coling2022 3598 temporal split used in the COLING 2022 paper

For the temporal-shift setting, model should be trained on train_2020 with validation_2020 and evaluate on test_2021 . In general, model would be trained on train_all , the most representative training set with validation_2021 and evaluate on test_2021 .

IMPORTANT NOTE: To get a result that is comparable with the results of the COLING 2022 Tweet Topic paper, please use train_coling2022 and test_coling2022 for temporal-shift, and train_coling2022_random and test_coling2022_random fir random split (the coling2022 split does not have validation set).

Models

model training data F1 F1 (macro) Accuracy
cardiffnlp/roberta-large-tweet-topic-single-all all (2020 + 2021) 0.896043 0.800061 0.896043
cardiffnlp/roberta-base-tweet-topic-single-all all (2020 + 2021) 0.887773 0.79793 0.887773
cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-all all (2020 + 2021) 0.892499 0.774494 0.892499
cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-all all (2020 + 2021) 0.890136 0.776025 0.890136
cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all all (2020 + 2021) 0.894861 0.800952 0.894861
cardiffnlp/roberta-large-tweet-topic-single-2020 2020 only 0.878913 0.70565 0.878913
cardiffnlp/roberta-base-tweet-topic-single-2020 2020 only 0.868281 0.729667 0.868281
cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-2020 2020 only 0.882457 0.740187 0.882457
cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-2020 2020 only 0.87596 0.746275 0.87596
cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-2020 2020 only 0.877732 0.746119 0.877732

Model fine-tuning script can be found here .

Dataset Structure

Data Instances

An example of train looks as follows.

{
    "text": "Game day for {{USERNAME}} U18\u2019s against {{USERNAME}} U18\u2019s. Even though it\u2019s a \u2018home\u2019 game for the people that have settled in Mid Wales it\u2019s still a 4 hour round trip for us up to Colwyn Bay. Still enjoy it though!",
    "date": "2019-09-08",
    "label": 4,
    "id": "1170606779568463874",
    "label_name": "sports_&_gaming"
}

Label ID

The label2id dictionary can be found at here .

{
    "arts_&_culture": 0,
    "business_&_entrepreneurs": 1,
    "pop_culture": 2,
    "daily_life": 3,
    "sports_&_gaming": 4,
    "science_&_technology": 5
}

Citation Information

@inproceedings{dimosthenis-etal-2022-twitter,
    title = "{T}witter {T}opic {C}lassification",
    author = "Antypas, Dimosthenis  and
    Ushio, Asahi  and
    Camacho-Collados, Jose  and
    Neves, Leonardo  and
    Silva, Vitor  and
    Barbieri, Francesco",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics"
}