数据集:
cais/mmlu
任务:
问答子任务:
multiple-choice-qa语言:
en计算机处理:
monolingual大小:
10K<n<100K语言创建人:
expert-generated批注创建人:
no-annotation源数据集:
original许可:
mit由 Dan Hendrycks , Collin Burns , Steven Basart , Andy Zou, Mantas Mazeika, Dawn Song 和 Jacob Steinhardt (ICLR 2021) 创作的 Measuring Massive Multitask Language Understanding 。
这是一个包含来自各个知识领域的多项选择题的海量多任务测试。该测试涵盖了人文学科、社会科学、硬科学和其他对某些人学习来说很重要的领域。它包含57项任务,包括初等数学、美国历史、计算机科学、法律等。要在这个测试中获得高准确率,模型必须具备广泛的世界知识和问题解决能力。
任务的完整列表: ['abstract_algebra', 'anatomy', 'astronomy', 'business_ethics', 'clinical_knowledge', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_medicine', 'college_physics', 'computer_security', 'conceptual_physics', 'econometrics', 'electrical_engineering', 'elementary_mathematics', 'formal_logic', 'global_facts', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_european_history', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_mathematics', 'high_school_microeconomics', 'high_school_physics', 'high_school_psychology', 'high_school_statistics', 'high_school_us_history', 'high_school_world_history', 'human_aging', 'human_sexuality', 'international_law', 'jurisprudence', 'logical_fallacies', 'machine_learning', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'moral_disputes', 'moral_scenarios', 'nutrition', 'philosophy', 'prehistory', 'professional_accounting', 'professional_law', 'professional_medicine', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy', 'virology', 'world_religions']
Model | Authors | Humanities | Social Science | STEM | Other | Average |
---|---|---|---|---|---|---|
1238321 | Khashabi et al., 2020 | 45.6 | 56.6 | 40.2 | 54.6 | 48.9 |
1239321 (few-shot) | Brown et al., 2020 | 40.8 | 50.4 | 36.7 | 48.8 | 43.9 |
12310321 | Radford et al., 2019 | 32.8 | 33.3 | 30.2 | 33.1 | 32.4 |
Random Baseline | N/A | 25.0 | 25.0 | 25.0 | 25.0 | 25.0 |
英语
解剖学子任务的示例如下:
{ "question": "What is the embryological origin of the hyoid bone?", "choices": ["The first pharyngeal arch", "The first and second pharyngeal arches", "The second pharyngeal arch", "The second and third pharyngeal arches"], "answer": "D" }
auxiliary_train | dev | val | test | |
---|---|---|---|---|
TOTAL | 99842 | 285 | 1531 | 14042 |
Transformer 模型通过对大量文本语料进行预训练,包括整个维基百科、数千本书籍和众多网站的内容,推动了最近的进展。这些模型因此能够看到关于专业主题的大量信息,其中大部分不会在现有的自然语言处理基准中进行评估。为了弥合预训练模型所看到的广泛知识和现有成功度量之间的差距,我们引入了一个新的基准,用于评估模型在各种人类学科中的能力。
[More Information Needed]
谁是源语言的制作者?[More Information Needed]
[More Information Needed]
谁是注释者?[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
如果您在研究中发现这个数据集有用,请考虑引用该测试以及它所依赖的 ETHICS 数据集:
@article{hendryckstest2021, title={Measuring Massive Multitask Language Understanding}, author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt}, journal={Proceedings of the International Conference on Learning Representations (ICLR)}, year={2021} } @article{hendrycks2021ethics, title={Aligning AI With Shared Human Values}, author={Dan Hendrycks and Collin Burns and Steven Basart and Andrew Critch and Jerry Li and Dawn Song and Jacob Steinhardt}, journal={Proceedings of the International Conference on Learning Representations (ICLR)}, year={2021} }
感谢 @andyzoujm 添加了该数据集。